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Abstract 

Liquid biopsy offers a noninvasive method to identify and monitor tumor-derived biomarkers, including circulating 
tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, microRNAs, and tumor-educated platelets, that provide 
real-time insights into the biological behavior of gynecological cancers. The detection of these markers has the poten-
tial to revolutionize cancer management by enabling earlier detection, providing novel data to personalize treat-
ments, and predicting disease recurrence before clinical imaging and predicting disease recurrence before clinical 
imaging can confirm progression, thereby also guiding complex clinical decision-making. However, because this new 
“omics” layer introduces additional complexity, it must be fully understood, from its biological rationale to technical 
development and clinical integration, to prevent confusion or misapplication. That is why, focusing on 14 critical fields 
of inquiry, our goal is to map the current state of liquid biopsy from bench to bedside while highlighting practical 
considerations for clinical integration. Each topic integrates recent advances in assay sensitivity, biomarker variability, 
and data interpretation, underscoring how standardized protocols and robust analytical methods are pivotal for reli-
able results. We then translate these findings into disease-specific insights, examining how liquid biopsy could refine 
early detection, minimal residual disease assessment, and therapy guidance in endometrial, cervical, and ovarian 
cancers. Although several FDA-approved assays and promising commercial tests illustrate the field’s rapid evolution, 
many translational hurdles remain, including the need for harmonized protocols, larger prospective clinical trials, 
and cost-effectiveness analyses. Crucially, our synthesis clarifies the pivotal role of interdisciplinary collaboration. 
Oncologists, laboratory scientists, and industry partners must align on standardized procedures and clinically relevant 
endpoints. Without such coordination, promising biomarkers may remain confined to research settings, limiting 
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their practical benefit. Taken together, our review offers a translational view designed to contextualize liquid biopsy 
in gynecological oncology.

Keywords  Liquid biopsy, Gynecological cancer, Translational medicine, Clinical implementation, Precision oncology, 
Narrative review

Introduction
The era of precision oncology mandates a paradigm 
shift in diagnosing, monitoring, and treating gyneco-
logical malignancies. Over 1.3 million women in the 
United States, encompassing 862,875 endometrial, 
295,748 cervical, and 238,484 ovarian cancer cases, 
highlight the urgent need to translate molecular 
insights into clinical practice [1]. In this context, liq-
uid biopsy has emerged as a non-invasive diagnostic 
tool with significant promise, facilitating the detec-
tion of tumor-derived biomarkers [2–7]. Despite this 
promise, translating emerging molecular findings into 
routine gynecological oncology care remains challeng-
ing. Each step, from in  vitro experiments to clinical 
validation, introduces distinct hurdles, as illustrated 
by Curry’s conceptual framework on translational sci-
ence [8]. Moreover, the complexity of oncology requires 
approaches that do not overwhelm practitioners, mak-
ing standardized, domain-agnostic strategies critical for 
practical implementation [9]. In gynecological oncol-
ogy specifically, protocols must consider the molecular 
heterogeneity seen across endometrial, cervical, and 
ovarian cancers, all while remaining feasible in real-
world settings. A truly translational perspective recog-
nizes the bidirectional nature of research and clinical 
practice: clinicians require clear guidance on interpret-
ing and applying molecular data, while scientists need 
insights from clinical realities to refine diagnostics and 
treatments [10, 11]. Understanding this interplay is par-
amount in gynecological oncology, where the nuances 
of tumor biology intersect with patient-centered care 
needs. This narrative review thus spotlights liquid 
biopsy as both a scientific breakthrough and a case 
study in effective translation. By examining its techni-
cal advances alongside real-world considerations, we 
aim to clarify how liquid biopsy can be harnessed to 
enhance gynecological cancer care.

Methods
We adopted a narrative, translational approach to 
address 14 critical issues in liquid biopsy for gyneco-
logical oncology, guided by the PRISMA flowchart 
(Supplementary Document 1). Each issue was explored 
either via focused search strategies or an experience-
based review (Table 1):

a)	 Narrative Exploration: Foundational topics were 
identified through landmark studies and the authors’ 
expertise.

b)	 Targeted Searches: Where specific data were needed, 
we used predefined keywords in PubMed, Embase, 
and Cochrane (2019–2024), limiting to English-lan-
guage human studies of clear relevance.

c)	 Screening: Retrieved articles were manually screened 
to exclude non-gynecological malignancies, case 
reports, editorials, or non-original data.

Overall, our goal was to integrate molecular rationale, 
technical considerations, and real-world clinical implica-
tions for each query.

The targets of liquid biopsy
Liquid biopsy represents a significant advancement in 
cancer diagnostics by enabling noninvasive sampling of 
tumor-derived materials from blood, urine, ascitic fluid, 
pleural fluid, cerebrospinal fluid, sputum, saliva, and 
feces [2–7] (Table  2 and Fig.  1). The principal analytes 
include:

a)	 Cell-free DNA (cfDNA) and Circulating Tumor DNA 
(ctDNA)

Cell-free DNA (cfDNA) refers to DNA fragments 
found in circulation, and its tumor-derived frac-
tion is termed ctDNA. In healthy individuals, 
plasma cfDNA levels range from 65 to 877 ng/ml, 
while those in cancer patients often exceed 1000 
ng/ml [12]. This tumor-derived fraction possesses 
genetic and epigenetic alterations and typically has 
a brief half-life of around 114 minutes [13]. Clear-
ance primarily occurs via the reticuloendothe-
lial system, with the liver accounting for 70–90%, 
spleen ~3%, kidneys ~4%, and the remainder 
undergoing enzymatic degradation [14, 15].

b)	 Circulating Tumor Cells (CTCs)
CTCs are intact cancer cells shed from primary or 
metastatic sites into the bloodstream, generally at 
very low concentrations (<10 cells/ml) [8]. Their 
half-life ranges from 1 to 2.4 hours, and they are 
commonly identified using epithelial markers such 
as epithelial cell adhesion molecule (EpCAM) or 
via distinct cellular traits [16].



Page 3 of 17Martinelli et al. J Exp Clin Cancer Res          (2025) 44:140 	

c)	 Tumor-Educated Platelets (TEPs)
TEPs are platelets that have absorbed tumor-
derived materials (e.g., mRNA, proteins, vesicles), 
undergoing characteristic changes in RNA and 
protein expression [17–20]. These alterations can 
distinguish them from normal platelets and offer 
insights into tumor biology.

d)	 Exosomes
 Exosomes are 30–100 nm vesicles formed via 
endocytic pathways [21–25]. They carry DNA, 
RNA, miRNAs, and proteins, and can be isolated 
using tetraspanins like CD63, CD9, and CD81 

[26]. Because they reflect the molecular makeup of 
their cells of origin, exosomes play crucial roles in 
tumor communication and metastasis.

e)	 MicroRNAs (miRNAs)
These 21–25 base-pair non-coding RNA mol-
ecules circulate either within vesicles or bound 
to proteins. They can act as either oncogenes 
or tumor suppressors, often displaying altered 
expression in cancer [27, 28]. Their attractive bio-
markers for various gynecological malignancies.

Table 1  Summary of approaches, search strategies, and outcomes for 14 critical issue related to liquid biopsy in gynecological cancers
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Table 2  Summary of liquid biopsy biomarkers in gynecological cancers
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How cancer relates to liquid biopsy targets in gynecologic 
oncology
Although each liquid biopsy component ultimately 
reflects tumor presence, each biomarker enters circula-
tion through distinct biological mechanisms:

a)	 CfDNA enters the circulation via apoptosis, necro-
sis, and NETosis [29]. During apoptosis, DNA is 
fragmented by enzymes such as DNA fragmentation 
factor B (DFFB), DNASE1, and DNASE1L3 [30, 31], 
and may also be released under conditions of cellu-
lar stress or injury [32]. Furthermore, their altered 
chromatin structure, which is more “open” due to 
intensified transcription, renders DNA susceptible to 
nuclease-mediated fragmentation [33]. These unique 
fragmentation patterns mirror profound changes 
in nuclear organization and gene expression seen in 
malignant transformation [34–36], a field referred to 
as “fragmentomics.” In circulation, it is protected by 
binding to nucleosomes, argonauts, and lipoproteins 
(HDL, LDL), or by encapsulation in vesicles [37, 38]. 
Cancer cells can also actively secrete DNA through 
extracellular vesicles, reflecting their high metabolic 
activity [39].

b)	 CTCs enter the bloodstream when cells detach from 
the primary tumor or metastases, reflecting key 
molecular alterations essential for malignancy. These 

include modified cell adhesion, heightened survival 
mechanisms, and resistance to anoikis (programmed 
cell death caused by detachment from the extracellu-
lar matrix). Their mere presence in peripheral blood 
points to the tumor’s invasive potential [16, 40]

c)	 TEPs are platelets whose molecular profiles have 
been reshaped by close interaction with the tumor 
microenvironment. Cancer cells release soluble fac-
tors, such as RNA and proteins, which platelets 
absorb, triggering alternative splicing events. These 
modifications indicate both direct tumor influ-
ence and the body’s wider response to malignancy 
[17–20]. Although early-phase or “phase 0” studies 
in gynecological cancers have hinted at the strong 
potential of TEPs for cancer detection and moni-
toring, robust and up-to-date evidence specifically 
within gynecological malignancies remains limited 
[41, 42].

d)	 Exosomes in cancer undergo changes in both quan-
tity and composition because malignant cells fre-
quently boost exosome production as part of survival 
and growth strategies, promoting cell-to-cell com-
munication, remodeling the tumor microenviron-
ment, facilitating invasive behavior, and contributing 
to drug resistance. Moreover, their cargo, mutated 
DNA, regulatory RNAs, and proteins, mirrors the 
parental tumor’s molecular signature [22–25].

Fig. 1  Graphic representation of liquid biopsy markers and sources for cancer detection. Liquid biopsy markers encompass circulating tumor cells, 
extracellular vesicles, tumor-derived microRNAs, and microbial cell-free DNA derived from the microbiota, which can be utilized to extrapolate 
cancer-associated microbiota signatures. These markers are released and detectable in various bodily fluids, including blood, urine, saliva, or stool 
(created with BioRender.com)
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e)	 Abnormal miRNA profiles in cancer represent a 
breakdown of crucial regulatory pathways. Elevated 
or depleted miRNA expression can bolster the malig-
nant phenotype. These small RNAs reach circula-
tion via active vesicular secretion or cell death; they 
remain stable either by binding protective proteins 
or by encapsulation in vesicles. Their distinct expres-
sion signatures in patient plasma often correlate with 
tumor presence and progression [25, 27, 28].

Techniques for biomarker detection
From a practical standpoint, having the option to ana-
lyze multiple biomarkers makes liquid biopsy especially 
appealing to clinicians. Nonetheless, standardizing pro-
tocols, managing costs, and accurately interpreting com-
plex genomic data remain significant barriers to routine 
adoption. The principal methods include:

a)	 DNA methylation represents one of the earliest and 
most stable cancer-associated alterations. It is typi-
cally assessed via bisulfite conversion, which distin-
guishes methylated from unmethylated cytosines 
[43]. Panels targeting genes such as RASSF1A, 
OPCML, and BRCA1 can achieve sensitivity and 
specificity as high as 91%, thereby increasing con-
fidence in early malignancy detection [44]. More 
advanced methods, including high-resolution melt-
ing analysis (HRMA) and next-generation sequenc-
ing (NGS), offer deeper insight into methylation pro-
files, though they come with higher costs and longer 
turnaround times [44]. One of the most famous 
multi-cancer early detection test focusing on ctDNA 
methylation signatures to detect multiple cancers is 
the Grail Galleri. With one large study suggesting the 
potential to identify over 50 tumor types from a sin-
gle blood draw [45], its performance specifically in 
endometrial, cervical, or ovarian cancer still requires 
further validation and FDA approval is yet to come.

b)	 Because ctDNA reflects both genetic and epigenetic 
aspects of a tumor, measuring it can guide targeted 
therapy or detect minimal residual disease [46]. 
Techniques like droplet digital PCR (ddPCR) can reli-
ably identify mutations (e.g., TP53, KRAS) with over 
99% specificity. NGS-based panels also allow simulta-
neous evaluation of multiple alterations. Importantly, 
multi-analyte tests now integrate ctDNA with addi-
tional biomarkers, such as selected proteins, com-
bined with machine-learning algorithms to achieve 
multi-cancer early detection. For instance, Cancer-
SEEK includes 16 gene mutations and 8 circulating 
proteins, and has reported sensitivities exceeding 
70–90% for certain tumor types [46, 47]. In gyneco-

logical oncology, ctDNA monitoring has shown prac-
tical clinical applications; for instance, Toboni et  al. 
demonstrated in advanced or recurrent endometrial 
cancer that ctDNA status, measured via the Signat-
era™ multiplex PCR assay, correlates with clinical 
outcomes [48]. Personalized NGS approaches have 
likewise been used to measure responses to PARP 
inhibitors in ovarian cancer. Large-scale sequenc-
ing of ctDNA has further delineated actionable 
molecular profiles in advanced endometrial cancer 
[49]. Despite these advances, ctDNA test sensitivity 
can decrease when ctDNA levels are extremely low, 
emphasizing the necessity of high-quality plasma 
samples and rigorous laboratory protocols [50]. 
Several ctDNA-based assays have received FDA 
approval, including Guardant360 and Foundation-
One® Liquid CDx [44]. FoundationOne® Liquid has 
also been applied to endometrial and other advanced 
tumors (lung, colon, ovarian, breast), where ctDNA 
fraction guides real-time management [51]. Moreo-
ver, low-coverage Illumina HiSeq2500 sequencing 
studies indicate that cfDNA can provide relevant 
molecular insights even without direct tumor refer-
ences, further extending its diagnostic and monitor-
ing utility [51].

c)	 These small, stable, tissue-specific RNA molecules 
continue to generate interest in clinical oncology. 
They can be measured by qPCR or microarray for 
targeted screening, while NGS allows a more com-
prehensive miRNA survey [52]. Exosomal miRNAs 
in particular reflect ongoing tumor activity, but iso-
lation protocols significantly affect yield and data 
quality. For example, ultracentrifugation can retrieve 
plentiful exosomes but risks vesicle damage, whereas 
size-exclusion chromatography (SEC) better pre-
serves vesicle integrity but may be labor-intensive 
[52]. Microfluidic platforms that integrate both size-
based and immunoaffinity-based isolation are emerg-
ing as a reliable alternative with promising specific-
ity and recovery [53]. Furthermore, new techniques 
like ELSA-seq (Enhanced Linear-Splinter Amplifica-
tion Sequencing) have shown predictive accuracies 
up to 97% in ovarian cancer, underscoring the role of 
ctDNA methylation profiling [54].

Biomarkers could reveal the story of gynecological cancers
Each biomarker type, ctDNA, CTCs, cfRNA, TEPs, and 
exosomes, uniquely reflects a tumor’s genetic profile, 
proliferative behavior, and metastatic potential.

a)	 ctDNA: Tracing Tumor Genetic Footprints.
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Because ctDNA captures the active genetic altera-
tions that drive a patient’s cancer, it can detect 
minimal residual disease (MRD) even before clini-
cal or imaging signs emerge [55]. In ovarian can-
cer, clinicians often track ctDNA levels to forecast 
outcomes and tailor therapies, whereas in endo-
metrial carcinoma, fluctuating ctDNA can suggest 
a heightened recurrence risk, prompting closer 
monitoring or additional intervention.

b)	 CTCs: Migratory Messengers of Tumors.
Unlike ctDNA, which reflects genetic mutations, 
CTCs are intact cancer cells that escape from pri-
mary or metastatic lesions [46, 56, 57]. Detecting 
even a small number can expose a latent potential 
for spread. In ovarian cancer, CTC enumeration 
and molecular profiling unveil micrometastatic 
disease, while in endometrial cancer, the presence 
of CTCs, sometimes detectable in early stages, 
may signal impending recurrence [58–61]. A nota-
ble hurdle is that CTCs can undergo epithelial-to-
mesenchymal transition (EMT), losing conven-
tional surface markers and thereby requiring more 
advanced technologies for reliable capture.

c)	 cfRNA and TEPs: Unveiling Subtler Layers of Tumor 
Biology.

Not all tumor-related signals come from DNA 
fragments or whole cells. cfRNA (including 
mRNA, miRNA, circRNA, and lncRNA) reflects 
active gene expression in tumors and can remain 
surprisingly stable in circulation [55]. In ovar-
ian cancer, certain miRNAs and circRNAs appear 
promising for diagnosing early-stage disease, and 
preliminary research on mRNA within utero-
tubal lavage fluid hints at additional detection 
approaches. Beyond cfRNA, TEPs offer another 
vantage point; platelets “educated” by cancer cells 
incorporate malignant RNA signatures that can 
distinguish tumors from benign states, though 
more validation is needed before such tests 
become routine.

d)	 Exosomes: Tiny Couriers of Tumor Cargo.
Exosomes encapsulate a tumor’s molecular fin-
gerprint, making them promising for noninva-
sive diagnosis, prognosis, and follow-up [55]. 
For example, in cervical cancer, exosomal circS-
LC26A4 correlates with advanced FIGO stages and 
lymph node metastases, suggesting utility in gaug-
ing disease severity [62]. Exosome-based assays 
also show potential in differentiating benign from 
malignant ovarian masses, though further clinical 
trials are required to standardize their application.

Does chemotherapy have an impact on liquid biopsy 
detection rate?
Chemotherapy can alter both the release and detect-
ability of ctDNA and CTCs. Early in treatment, tumor 
cell apoptosis and necrosis often lead to short-term 
spikes in ctDNA as dying cells shed DNA fragments [63]. 
Although this rise may seem concerning, it typically sig-
nifies a positive treatment response rather than disease 
progression. Over time, stable declines in ctDNA or 
CTC counts indicate meaningful tumor regression [64], 
whereas persistently elevated or resurgent biomarker lev-
els suggest drug resistance or minimal residual disease 
[65]. For instance, platinum-resistant ovarian tumors 
generally exhibit higher CTC counts [65], while increas-
ing ctDNA during PARP inhibitor therapy can signal 
emerging treatment failure [66, 67]. Epigenetic modifica-
tions, like HOXA9 promoter methylation, further refine 
therapeutic choices and prognostication [68]. By serially 
monitoring these biomarkers, clinicians can distinguish 
between chemotherapy-induced cell death and emerging 
resistance [69].

Ideal Scenarios for Liquid Biopsy: What are the clear‑cut 
situations or clinical indications in gynecological cancers 
where liquid biopsy is particularly advantageous?
Liquid biopsy is especially beneficial in gynecological 
cancers for early detection, often identifying malignan-
cies before symptoms appear, particularly in high-risk 
groups [70]. It also facilitates real-time monitoring of 
therapeutic responses, enabling treatment modifications 
if ctDNA levels rise or remain elevated. Post-treatment, 
detecting minimal residual disease (MRD) via ctDNA can 
guide follow-up and additional interventions. In addition, 
liquid biopsy pinpoints actionable mutations for person-
alized therapy and reveals tumor heterogeneity to refine 
treatment plan. Finally, routine ctDNA assessments can 
determine recurrence risk, ensuring targeted surveillance 
for patients at high risk [71].

Warnings on liquid biopsy
Liquid biopsy can be unreliable under certain biological 
and technical conditions. In early-stage (I or II) disease, 
ctDNA concentrations can be more than tenfold lower 
than in advanced disease, greatly increasing the likeli-
hood of false negatives [72]. Additionally, ctDNA’s short 
half-life, ranging from 15 minutes to 2 hours, makes it 
susceptible to degradation, while cell lysis can further 
contaminate samples unless handled swiftly under strin-
gent protocols [73, 74]. Exosomes pose similar hurdles: 
tumor-derived vesicles often account for less than 2% of 
circulating exosomes and are rapidly cleared, requiring 
high-throughput, highly sensitive methods for accurate 
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analysis [75, 76]. Although TEPs are abundant and simple 
to isolate, they may capture only a fraction of a tumor’s 
genetic profile [72]. Combined, these issues can lead to 
suboptimal or false-negative outcomes, particularly in 
heterogeneous tumors or when specific histopatho-
logical detail is essential for treatment decisions [77]. 
Understanding and compensating for such biological 
complexities is crucial to preserve the accuracy and clini-
cal utility of liquid biopsy results.

False positives and negatives in liquid biopsy
Biological complexity and technical challenges often 
drive false results in liquid biopsies for gynecological 
cancers. For instance, Fourier transform infrared (FTIR) 
spectroscopy can reach nearly 99% sensitivity, but at the 
cost of lowered specificity, causing benign conditions to 
appear malignant [78] . Conversely, boosting specificity 
risks missing early tumors that release minimal ctDNA 
[78]. In fluorescence liquid biopsy protocols, benign 
ovarian cysts may mimic malignant fluorescence signals, 
raising false positives, while some ovarian tumors lack a 
distinct fluorescence shift, increasing false negatives [79]. 
Similarly, in microvesicle proteomics of uterine fluid, 
benign conditions can mimic malignant signatures, lead-
ing to over-diagnosis, while low microvesicle counts in 
early-stage cancer may go undetected [77].

Emerging biotechnological techniques under investigation 
for liquid biopsy
A variety of next-generation laboratory methods prom-
ise to bolster biomarker detection and revolutionize 
current diagnostic workflows. Digital PCR partitions 
samples to precisely count nucleic acids, obviating refer-
ence standards and enhancing sensitivity for rare ctDNA 
mutations [80]. NGS provides deep genomic snapshots, 
capturing tumor heterogeneity and enabling real-time 
monitoring of emerging subclones [81]. Nanoparticle-
based assays signals from low-abundance targets and can 
be integrated into portable, point-of-care devices [82]. 
Meanwhile, CRISPR-Cas systems leverage genome-edit-
ing principles for rapid, targeted nucleic-acid detection, 
cutting turnaround times and facilitating flexible assay 
design [83]. Single-cell sequencing dissects individual 
CTCs at the genomic and epigenomic levels, identify-
ing subtle subclones that fuel resistance or relapse [84]. 
Finally, electrochemical and optical biosensors transform 
biological interactions into quantifiable signals, deliver-
ing cost-effective, sensitive detection of biomarkers such 
as miRNAs, ctDNA, and exosomes [85].

AI Integration in Liquid Biopsy
Artificial intelligence can substantially enhance liquid 
biopsy applications by synthesizing multiple layers of 

cfDNA fragmentomics, methylomics, and epigenetic 
data, thereby boosting both sensitivity and specific-
ity. Combining fragmentation-focused approaches like 
DELFI with three-dimensional genome mapping tools 
pinpoints tumor-specific changes in cfDNA length and 
distribution while determining tissue of origin via chro-
matin conformation and nucleosome positioning [33, 
86]. Further metrics, such as promoter fragmentation 
entropy and windowed protection scores, illuminate 
gene activation and transcription factor binding [87, 88]. 
Orientation-aware fragmentation refines tissue-of-ori-
gin analyses by mapping nucleosome placement in open 
chromatin areas [89]. Methylation-based methods clas-
sify cfDNA fragments by inferred methylation patterns, 
attributing them to specific tissues [90, 91]. Different 
databases like consolidate broad omics data with cfDNA 
sequencing, offering a holistic perspective on gene regu-
lation and fragmentomics [92].

Liquid biopsy in ovarian cancer

a)	 Screening
Liquid biopsy screening is particularly relevant for 
BRCA1/2 mutation carriers, whose ovarian cancer 
risk is two to four times higher [93]. Various bio-
markers have shown promise. Plasma protein sig-
natures (e.g., SPARC, THBS1) have been proposed 
[94], and uterine lavage analyses identified a seven-
protein panel with over 99% negative predictive 
value [95]. Pap test–based methods demonstrated 
52% overall accuracy and 26% sensitivity for eight-
gene panels [96], while p53 variants were found in 
archival Pap smears up to six years before diagno-
sis [97]. Methylation profiling of tumor suppressor 
genes ranges from 41% to 100% sensitivity, with 
OPCML emerging as a particularly robust bio-
marker [98].

b)	 Early Diagnosis
Meta-analysis of circulating cell-free DNA dem-
onstrates 70% sensitivity and 90% specificity, with 
a diagnostic odds ratio of 26.05 and negative like-
lihood ratio of 0.34 [99]. Updated meta-analyses 
incorporating 22 studies confirm these findings 
with slightly improved pooled sensitivity of 73% 
while maintaining 90% specificity [100]. Micro-
RNA analysis shows strong diagnostic potential, 
with meta-analyses revealing 89% sensitivity and 
64% specificity. Multiple miRNA panels demon-
strate superior performance compared to single 
markers, with diagnostic odds ratios of 30.06 ver-
sus 13.21 [101]. Recent research has identified nine 
upregulated miRNAs in ovarian cancer patients, 
with MiR-145 and MiR-205 showing the highest 
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fold change exceeding 2-fold [102]. Studies con-
sistently demonstrate improved accuracy when 
combining CA125 with investigated miRNAs 
compared to either marker alone.

c)	 Diagnosis
ctDNA correlates well with tumor DNA, though 
heterogeneity may affect accuracy [103]. Extra-
cellular vesicles containing miRNAs also display 
notable expression differences between ovarian 
cancer patients and controls [104]. Diagnostic per-
formance varies by plasma vs. serum collection, 
extraction protocols, hormonal factors, and men-
strual status [105, 106].

d)	 Staging
Several liquid biopsy biomarkers help distinguish 
disease stages. For instance, CD117 expression on 
cells and on extracellular vesicles is significantly 
higher in recurrent disease, particularly in high-
grade serous carcinoma [107]. Advanced-stage 
ovarian cancer typically features elevated cfDNA 
levels [108] and higher ctDNA detection rates 
[109]. Low-coverage whole-genome sequencing 
of plasma cfDNA can differentiate early- from 
late-stage cancers [110]. Exosomal miR-205 and 
certain metabolic markers (phenylpyruvic acid, 
4-hydroxyphenylpyruvic acid) are also linked to 
advanced disease [55, 111].

e)	 Evaluation for Treatment Response
Liquid biopsy enables real-time monitoring of 
chemotherapy and PARP inhibitor responses [55]. 
ctDNA tracks primary and acquired resistance; 
for instance, in BRCA-mutated cases, increased 
HOXA9 methylation during treatment correlates 
with poor PARP inhibitor efficacy [68]. Serum sol-
uble PD-L2 levels can predict platinum response 
since high levels demonstrate association with 
platinum therapy response and low levels indicate 
resistance and poorer prognosis [112]. For high-
grade serous ovarian cancer patients, ctDNA anal-
ysis detects chemotherapy response earlier than 
CA-125, with TP53 mutant allele fraction serving 
as a predictor of poor outcomes and rapid pro-
gression [113]. Extracellular vesicle markers CD24 
and EpCAM in plasma show elevated levels in 
non-responding versus responding patients [114]. 
Additionally, cfDNA analysis through next-gen-
eration sequencing before and during treatment 
can track tumor progression and genetic evolution 
during chemotherapy [115].

f )	 Follow-up
For post-treatment surveillance, ctDNA shows 
high prognostic utility. In high-grade serous ovar-
ian cancer, elevated ctDNA (≥0.2 copies/μL) at 

three months post-chemotherapy correlates with 
a 58.3% recurrence risk compared to patients with 
low levels (<0.2 copies/μL), who demonstrate 
only 6.7% recurrence risk [63]. Liquid biopsy can 
detect relapse up to seven months earlier than CT 
imaging [116]. and outperforms CA125 in pre-
dicting progression [117]. Elevated ctDNA levels 
also associate with worse survival, and HOXA9 
methylation positivity raises the relapse risk more 
than threefold [118]. Additional studies confirm 
that ctDNA quantification can indicate recurrence 
months before conventional clinical methods, pro-
viding an objective definition of complete cytore-
duction [119].

Liquid biopsy in endometrial cancer

a)	 Screening
Endometrial cancer (EC) often presents asympto-
matically, prompting interest in minimally invasive 
screening. A major systematic review reported 
56 blood-based biomarker studies and only one 
employing urine [120]. Recent methods empha-
size site-specific sampling to improve sensitivity 
and specificity. A tampon-based test evaluating 
methylated DNA markers in vaginal fluid reached 
76% sensitivity and 96% specificity (AUC=0.88) in 
192 participants, and further refinements raised 
sensitivity to 82% [121]. Another technique, endo-
metrial fluid sampling akin to saline infusion sono-
hysterography, revealed distinct microRNAs (miR-
183-5p, miR-429, miR-146a-5p) differentiating 
malignant from benign cases in both an explora-
tory and validation cohort [122]. Although these 
strategies reduce nonspecific signals by sampling 
near the tumor site, large-scale validation remains 
necessary [120–122].

b)	 Diagnosis
While standard endometrial biopsy remains the 
gold standard, liquid biopsy may aid patients who 
cannot undergo invasive sampling or who yield 
inadequate tissue. Exosomal, proteomic, and 
metabolomic markers, along with ctDNA, cfDNA, 
and survivin-expressing cells, have all shown 
promise but have not yet matched the accuracy 
of tissue biopsy [120]. Nonetheless, certain exoso-
mal microRNAs (e.g., miR-21, miR-27a, miR-223) 
and proteomic markers (YKL-40, DJ-1) demon-
strated AUC values approaching 0.925 [120]. In a 
pilot study, CTCs were detectable in 80% of ovar-
ian venous blood but absent in peripheral blood 
among early-stage EC patients, suggesting a local-
ized dissemination route [58]. Meanwhile, cfDNA 
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profiling in 61 advanced EC patients had 87.5% 
concordance with tissue-based molecular classifi-
cation and uncovered actionable alterations in 65% 
[123]. Another methodological study combined 
suction curettage without anesthesia, liquid-based 
cytology, and micro-histology to achieve 92.3% 
sensitivity and 100% specificity in 100 patients 
[122]. Collectively, these findings indicate that 
blood, uterine aspirates, and other minimally inva-
sive samples, together with molecular profiling, 
may guide targeted EC therapies [58, 120, 122, 
123].

c)	 Follow-up and Prognostic Assessment
Liquid biopsy also aids in tracking disease progres-
sion and refining prognosis. In a prospective study 
of 198 patients, 29.38% had detectable ctDNA at 
surgery; this correlated with higher tumor grade 
and advanced stage [124]. Elevated cfDNA (>25 
ng/mL) was linked to shorter DFS and DSS, and 
ctDNA positivity detected relapse around 4.7 
months before clinical or radiologic confirma-
tion [124]. Another pilot comparing ctDNA and 
tumor DNA in 21 patients found shared muta-
tions in two-thirds of cases, although the detec-
tion of DNMT3A and TET2 mutations in older 
individuals emphasized the confounding issue of 
clonal hematopoiesis [59]. Microsatellite instability 
(MSI) monitored via ddPCR in 90 uterine aspirates 
showed 96.67% concordance with mismatch repair 
protein status; in one case, MSI markers identi-
fied recurrence before clinical detection [124]. 
Despite these advances, about 20% of relapse cases 
were ctDNA-negative, highlighting the need for 
assay improvements or multipronged biomarker 
approaches [124, 125].

d)	 Perspectives and Emerging Techniques
Ongoing refinements aim to enhance liquid biop-
sy’s sensitivity, specificity, and practicality. An 
exosome metabolic fingerprinting study that used 
a Fe3O4@COF@Au-Apt nanoplatform evalu-
ated 105 plasma samples (51 EC, 54 controls) and 
attained an AUC of 0.924 in blind testing [126]. 
Machine learning identified four metabolites, 
hydroxychalcone, L-acetylcarnitine, elaidic acid, 
and glutathione, that produced 94.9% classifica-
tion accuracy [126]. Similar AI-assisted analytics, 
along with advanced sampling (e.g., suction curet-
tage, tampon-based fluid collection) and molecular 
assays (NGS, ddPCR-MSI), could further trans-
form EC detection and monitoring [120, 121, 126].

Liquid Biopsy in Cervical Cancer

a)	 Early Diagnosis and Screening
Human papillomavirus (HPV) is the primary etio-
logic agent in cervical cancer, with subtypes 16 and 
18 accounting for about 70% of cases [127]. Digi-
tal droplet PCR of HPV-specific genes E7 and L1 
in plasma samples from 138 Hong Kong Chinese 
women with cervical cancer revealed that higher 
viral loads correlate with increased five-year recur-
rence and mortality risk, highlighting circulating 
HPV DNA as a critical surveillance marker [128].

b)	 Diagnosis and Disease Monitoring
Several serum protein markers offer clinical util-
ity in monitoring cervical cancer. For example, 
VCAM-1 and ICAM-1 levels can predict radio-
therapy or chemoradiotherapy response in a 
cohort of 189 patients [129]. Regulatory proteins 
Rspo1 and Slit2 correlate positively with radio-
therapy tolerance and negatively with hematologic 
and cardiac toxicity [130]. Pre-treatment hemo-
globin below 11 g/dl is linked to treatment resist-
ance, whereas hemoglobin above 12.7 g/dl is sig-
nificantly associated with complete radiotherapy 
response (p<0.001), as well as improved overall 
and disease-free survival [131].

c)	 Staging and Treatment Response Evaluation
Multiple studies have established threshold values 
for Squamous cell carcinoma antigen (SCC-Ag) 
across clinical contexts. Pre-treatment levels above 
2 ng/ml predict distant recurrence within five years 
[132], while levels exceeding 6.5 ng/ml suggest a 
benefit from adjuvant chemotherapy, reducing sys-
temic recurrence [133]. Post-treatment thresholds 
above 1.15 ng/ml correlate with decreased three-
year overall survival (84%) in chemoradiotherapy 
patients, and levels exceeding 1.20 ng/ml predict 
worse survival (95%) in radiotherapy-only cohorts. 
Additionally, post-treatment SCC-Ag above 1.0 
ng/ml is linked to higher recurrence risk in stage 
IB–IIIB disease [134, 135]. Analyzing cfDNA in 93 
plasma samples from 57 patients demonstrated a 
marked decrease in allele fraction deviation (AFD) 
after treatment (p=0.029), correlating cfDNA 
reduction with tumor shrinkage and confirming 
the predictive value of AFD for disease progression 
and relapse [136].

d)	 Follow-up and Surveillance
In a study of 99 patients with locally advanced 
cervical cancer (FIGO stage IIB–IVA), elevated 
CTCs and SCC-Ag levels emerged as independ-
ent prognostic factors for disease-free survival. A 
combined CTC/SCC-Ag risk model outperformed 
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individual markers, and multivariate analysis con-
firmed serum CTC count, FIGO stage, and serum 
SCC-Ag as independent predictors for two-year 
disease-free survival [137]. Monitoring treat-
ment response through VEGF1 reduction, along-
side tissue HIF-1a levels, correlated strongly with 
complete chemoradiotherapy response [138]. 
Implementing cfDNA surveillance enabled early 
detection of treatment response and progression, 
while serial plasma sampling facilitated longitudi-
nal genomic tracking. Systematic examination of 
circulating HPV DNA similarly reflected disease 
status, with shifts in viral load providing an early 
sign of therapy response and recurrence risk [139]. 
Integrating multiple biomarkers yields superior 
clinical utility over single-marker approaches, par-
ticularly in evaluating early response, anticipating 
recurrence, adjusting treatment strategies, and 
ensuring long-term surveillance.

Analogistic practical considerations: liquid biopsy 
versus pathological analysis
Empirical data from a broad range of tumor types under-
score how liquid biopsy has become powerful, mini-
mally invasive tool that complements traditional tissue 
biopsy, expanding the horizons of precision oncology 
(Table 3). Although many of these studies center on non-
gynecological cancers, they provide instructive analo-
gies for potential applications in endometrial, cervical, 
and ovarian tumors. By capturing tumor heterogeneity 
in real time provides vital insights into mutational bur-
dens, emerging resistance, and minimal residual disease 
[140]. However, important challenges persist. Early-stage 
malignancies may release scant amounts of ctDNA, lim-
iting sensitivity and increasing the risk of false negatives, 
and clonal hematopoiesis can obscure ctDNA findings 
in older patients [141, 142]. Further, while liquid biopsy 
excels at providing a dynamic portrait of disease evolu-
tion, it lacks the exhaustive morphological data gleaned 
from tissue specimens, which remain the gold standard 
for grading, staging, and comprehensive immunohis-
tochemical assessments [143, 144]. Despite these con-
straints, the real-time feedback that liquid biopsy offers 
is invaluable for guiding therapy modifications, detecting 
emerging driver mutations, and flagging early relapse, 
often before radiographic imaging can confirm disease 
progression [145, 146]. Moreover, it can be particularly 
advantageous when tumor sites are anatomically diffi-
cult to biopsy or when patients’ overall health precludes 
surgical intervention [147]. Current investigative trends 
include refining molecular assays for higher sensitivity 
in early-stage tumors and exploring additional biofluids, 

such as ascites and cerebrospinal fluid, to expand diag-
nostic reach [148]. In moving forward, the synergy 
between liquid biopsy and traditional pathological anal-
ysis promises the most comprehensive patient stratifi-
cation. Tissue biopsy remains indispensable for initial 
diagnosis, detailed morphological evaluation, and robust 
molecular classification; meanwhile, liquid biopsy offers a 
dynamic and repeatable snapshot of tumor evolution that 
optimizes personalized treatment and surveillance strate-
gies [141, 142]. By integrating both modalities, clinicians 
can capitalize on real-time genetic insights while retain-
ing the diagnostic depth essential for accurate staging 
and targeted therapy. Ultimately, ongoing technological 
advances and interdisciplinary collaboration will further 
refine these approaches, facilitating earlier detection, 
improved outcomes, and a more patient-centric model of 
cancer care.

Conclusion
Liquid biopsy has emerged as a pivotal, noninvasive tool 
for the detection and monitoring of gynecological can-
cers, offering real-time insights into tumor biology that 
complement standard tissue-based approaches, but it 
has not yet been entered into routine clinical practice in 
gynecological oncology. This review aims to clarify the 
fundamental biological rationale and technical founda-
tions of various liquid biopsy biomarkers in gynecologi-
cal oncology, which is essential for both researchers and 
clinicians seeking to contextualize current evidence. 
Indeed, while many studies report encouraging perfor-
mance in controlled or advanced disease settings, true 
clinical utility remains unproven in larger, prospective 
trials. A further consideration is the growing interest in 
multi-cancer early detection tests that are still waiting 
for FDA approval [149, 150]. Although these platforms 
have generated considerable excitement, real-world data 
highlight potential shortcomings. Sensitivity for early-
stage disease can be modest, raising questions about 
whether finding a tumor earlier will ultimately translate 
into improved survival or merely reflect lead-time bias. 
Likewise, even a small false-positive rate, when pro-
jected to a population-wide screening program, could 
lead to unnecessary, invasive diagnostic procedures 
and substantial costs. For gynecological malignancies, 
specifically, data remain sparse, underscoring the need 
for robust clinical trials that assess actual reductions in 
cancer-specific mortality rather than rely solely on stage-
shift endpoints. By contrasting robust technical advances 
with these variables, and sometimes limited, clinical out-
comes, we aim to underscore that liquid biopsy, though 
innovative, is not a one-size-fits-all solution; its util-
ity must be assessed in a disease- and context-specific 
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manner. By outlining the mechanistic basis, we illustrate 
where current approaches might fail under practical con-
ditions and how targeted technical improvements could 
address these pitfalls. Ultimately, ongoing interdiscipli-
nary efforts, larger prospective trials, cost-effectiveness 
analyses, and meticulous follow-up will be essential for 
resolving these gaps and ensuring that promising labora-
tory data translate into meaningful, patient-centered out-
comes in gynecological. oncology.
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