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Abstract 

Background Intrinsic and acquired resistance to second-generation anti-androgens pose a significant clinical chal-
lenge in the treatment of metastatic castration-resistant prostate cancer (mCRPC). Novel biomarkers to predict treat-
ment response and inform alternative treatment options are urgently needed.

Methods Deep targeted sequencing, with a prostate cancer-specific gene panel, was performed on circulating 
tumor DNA (ctDNA) and germline DNA from blood of mCRPC patients recruited in Denmark (n = 53), prior to start-
ing first-line treatment with enzalutamide or abiraterone acetate, and for a subset of patients also at progression 
(n = 18). Likely clonal hematopoietic variants were filtered out. Genomic findings were correlated to clinical outcomes 
(PSA progression-free survival (PFS), overall survival (OS)). Intrinsic resistance candidate biomarkers were considered 
by enrichment analysis of nonresponders vs. responders. Genomic alterations at progression were considered as pos-
sible drivers of acquired resistance. Clinical actionability was assessed based on OncoKB and ESCAT.

Results Somatic alterations in PTEN, cell cycle regulators (CCND1, CDKN1B, CDKN2A, and RB1) and chromatin modula-
tors (CHD1, ARID1A) were associated with significantly shorter PFS and OS, also after adjusting for ctDNA% in multivari-
ate Cox regression analysis. The associations with poorer outcomes for alterations in PTEN and chromatin modulators 
were validated in an external dataset. Patients with primary resistance to enzalutamide/abiraterone had enrichment 
for BRAF amplification and CHD1 loss, while responders had enrichment for TMPRSS2 fusions. AR resistance mutations 
emerged in 22% of patients at progression. These were mutually exclusive with other alterations that may confer 
resistance (i.e., activating CTNNB1 mutations, combined TP53/RB1 loss). Clinically actionable alterations, primarily 
in homologous recombination repair genes, were found in 54.7% and 49.0% of patients (OncoKB and ESCAT, respec-
tively), with few additional alterations detected at progression. Level I alterations were identified in 41.5% of patients 
employing OncoKB, however only in 13.2% based on ESCAT.
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Conclusions Our study identifies known and novel prognostic and predictive biomarker candidates in patients 
with mCRPC undergoing first-line treatment with enzalutamide or abiraterone acetate. It further provides real-world 
evidence of the significant potential of genomic profiling of ctDNA to inform treatment in this setting. Clinical trials 
are warranted to advance the implementation of ctDNA-based biomarkers into clinical practice.

Keywords Metastatic castration-resistant prostate cancer (mCRPC), Circulating cell-free DNA (cfDNA), Circulating 
tumor DNA (ctDNA), Liquid biopsy, Biomarker, Prognostic, Predictive, Resistance, Clinical actionability, Clonal 
hematopoiesis

Background
Life-prolonging treatment options for metastatic cas-
tration-resistant prostate cancer (mCRPC) have rapidly 
expanded in recent years, including the approval of sec-
ond-generation anti-androgens (i.e., enzalutamide and 
abiraterone acetate). Despite these advancements, major 
clinical challenges remain, with a significant proportion 
of patients presenting with primary resistance to these 
agents (c.10–40%) and acquired resistance inevitably 
developing in the remaining patients [1–3]. Novel bio-
markers that can predict treatment response, and inform 
alternative treatments, are thus urgently needed to guide 
treatment selection in this patient population.

Unlike in other cancer types, genomic profiling of 
tumor tissue is not routinely employed in clinical prac-
tice for patients with mCRPC. This is in part due to 
tumor tissue not being easily accessible, as patients 
often solely have bone metastases, and in part due to 
the conceived limited clinical utility of tumor profiling 
in this patient population. Nevertheless, recent studies 
characterizing the molecular landscape of mCRPC have 
identified androgen receptor (AR) splice variants, AR 
mutations and copy number gains, as well as activation 
of alternative pathways (e.g., WNT or FGFR signaling), 
as mechanisms conferring resistance to second-gener-
ation anti-androgens [3–7]. Moreover, PARP inhibitors 
have recently been approved as monotherapy, as well as 
in combination with second-generation anti-androgens 
[8–10], for patients with mCRPC with either germline 
or somatic alterations in homologous recombination 
repair genes (e.g., BRCA2). These developments suggest 
a clinically meaningful role for genomic profiling in this 
patient population and warrant further investigation into 
genomic biomarkers to inform treatment in this setting.

Profiling of circulating tumor DNA (ctDNA) in blood 
has been suggested to be advantageous in this patient 
population, as it is minimally invasive, able to identify 
the genomic driver alterations present in matched pro-
static tumor tissue [11, 12], and as it may more closely 
capture the heterogeneity of the metastatic burden in 
each patient [12]. In this study, we therefore sought to 
identify ctDNA-based biomarkers associated with treat-
ment response, progression and survival in patients 

with mCRPC undergoing first-line treatment with enza-
lutamide or abiraterone acetate. We furthermore sought 
to investigate the utility of ctDNA profiling to identify 
clinically actionable alterations that may inform targeted 
therapy options. Accordingly, we performed deep tar-
geted sequencing of 71 liquid biopsies from 53 men with 
newly diagnosed mCRPC, employing a comprehensive 
prostate cancer (PC)-tailored gene panel, enabling iden-
tification of mutations in 78 relevant genes and structural 
variants in 11 genes, as well as estimation of copy num-
ber and determination of microsatellite instability (MSI) 
status [13–15]. ctDNA from plasma, and germline DNA 
from buffy coats, were sequenced at baseline (mCRPC 
diagnosis, prior to commencement of first-line treat-
ment), and for a subset of patients also at progression 
(18/53 patients, taken at time of treatment cessation).

Our study builds and expands on prior studies, and 
provides real-world evidence of the significant potential 
of genomic profiling of ctDNA to inform treatment in 
patients undergoing first-line treatment for mCRPC.

Patients and methods
mCRPC patients
Blood samples (30–50 mL) were obtained from 53 
mCRPC patients, receiving abiraterone acetate or enza-
lutamide as first-line treatment, at Aarhus University 
Hospital or the Regional Hospital West Jutland, Den-
mark (Table  1). Patients were selected, based on having 
ctDNA% estimates of ≥ 3% using ichorCNA [16], from 
a larger cohort of mCRPC patients previously profiled 
by low-pass whole genome sequencing (lpWGS) [17]. 
Patients were included between April 1st, 2016 and 
August 31st, 2018. Samples were collected at mCRPC 
diagnosis prior to treatment initiation (n = 53) and for 
a subset also longitudinally during treatment (median 
interval of 2 months, range 0.5–5.6 months) and at pro-
gression when treatment was discontinued (n = 18).

Blood sample processing and extraction of circulating 
cell‑free DNA (cfDNA) and germline DNA
Blood samples were collected in 10 mL BD Vacutainer  K2 
EDTA tubes (Beckton Dickinson) and processed within 
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Table 1 Patient characteristics

PC prostate cancer, ADT androgen deprivation therapy, mCRPC metastatic castration-resistant prostate cancer, PSA prostate specific antigen
a  Subsequently confirmed by imaging (radiographic progression) in 47/47 (100%) patients
b  Three of the 6 patients passed away prior to PSA progression, one patient was lost to follow-up, one was switched from abiraterone to enzalutamide after one 
month of treatment due to side effects rather than progression, and one was still on treatment at last follow-up
c  One patient switched from abiraterone to enzalutamide after one month of treatment due to side effects and was therefore not included in this analysis

Patient characteristics Cohort (n = 53)

M‑stage at initial PC diagnosis, n (%)
 0 23 (43.4)

 1 28 (52.8)

 X 2 (3.8)

Treatment with curative intent at initial PC diagnosis, n (%)
 Radical prostatectomy 5 (9.4)

 Radiation therapy 9 (17.0)

 Not treated with curative intent 39 (73.6)

Treatment in the hormone‑sensitive setting, n (%)
 ADT alone 38 (71.7)

 Surgical castration alone 4 (7.5)

 ADT + surgical castration 1 (1.9)

 ADT + docetaxel 10 (18.9)

Metastatic burden at mCRPC diagnosis (imaging), n (%)
 Bone only 23 (43.5)

 Lymph node only 6 (11.3)

 Bone and lymph node 19 (35.8)

 Visceral 5 (9.4)

Blood chemistry at mCRPC diagnosis (baseline)
 PSA (ng/mL), median (range) 46.3 (1.4–350.6)

 Alkaline phosphatase (U/L), median (range) 111 (9.6–1053)

ECOG Performance status at mCRPC diagnosis, n (%)
 0 28 (52.9)

 1 21 (39.6)

 2 4 (7.5)

Overall follow‑up (months), median (range) 22.2 (2.6–57.9)

First‑line mCRPC treatment, n (%)
 Abiraterone acetate 15 (28.3)

 Enzalutamide 38 (71.7)

PSA progression, first‑line mCRPC treatment
 Yes, n (%)a 47 (88.7)

 Progression-free survival (months), median (range) 6.9 (1.3–28.0)

 No, n (%)b 6 (11.3)

 Available follow-up time during first-line treatment (months), median (range) 14.5 (1.0–48.6)

PSA response, first‑line mCRPC treatment
 PSA30, n (%)c 45 (86.5%)

 PSA50, n (%)c 45 (86.5%)

 PSA90, n (%)c 28 (53.8%)

Dead
 Yes, n (%) 37 (69.8)

 Overall survival (months), median (range) 22.2 (3.6–49.7)

 No, n (%) 16 (30.2)

 Total available follow-up time (months), median (range) 21.5 (2.6–57.9)
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2 h as previously described (stored at 4 °C until pro-
cessing)[17]. See Supplemental Methods for a detailed 
description of blood sample processing, and extraction of 
cfDNA and germline DNA.

NGS library preparation
Deep targeted sequencing using a PC-tailored gene panel 
was employed to characterize alterations in cfDNA and 
germline DNA as previously described [13]. An over-
view of the panel is provided in Supplementary Table 1. 
Libraries were prepared using the Kapa Hyper Library 
Preparation Kit (KAPA Biosystems) and sequenced on 
an  IlluminaⓇ Novaseq instrument (S-prime flowcell). 
Additional details are provided in Supplemental Meth-
ods. cfDNA libraries were also profiled by lpWGS, and 
ichorCNA was used to estimate ctDNA% [16, 17].

Sequence alignment, initial processing, and quality control
Fastq files were demultiplexed and quality checked 
(fastQC, v. 0.11.8). Adapter sequences were trimmed 
(Skewer tool, v0.1.117) [18]. Paired-end sequences were 
mapped to the hg19 reference genome (BWA MEM, 
v.0.7.7)[19]. PCR and optical duplicates were removed 
(Picard markdups, v. 2.19)[20] followed by realignment 
(GATK4, 4.1.2.0) [21], structural variant calling, copy 
number analysis (additional details below), and MSI 
analysis. Ploidy and tumor purity were assessed using 
PureCN (v. 1.2.3) [22].

Somatic variant calling and interpretation
SNVs and small insertions and deletions (indels) were 
called using 4 different tools: GATK Mutect2 (v. 4.1.2.0) 
[23], Strelka2 Somatic (v. 2.9.10) [24], VarDict (v. 1.6) 
[25], and VarScan2 (v. 2.4.2) [26]. Patient-matched ger-
mline samples were used for filtering. Additional filtra-
tion details are provided in the Supplemental Methods. 
Evidence of loss of heterozygosity (LOH) was assessed 
based on cfDNA copy number profiles and allele ratio of 
heterozygous single nucleotide polymorphisms (SNPs). 
All variants were manually inspected in the Integrative 
Genomics Viewer (IGV, v. 2.5.3).

Copy number variations (CNVs) were called using 
CNV Kit (v. 0.7.9) [27] and PureCN (v. 1.2.3) [22]. 
Somatic focal amplifications were called if the median 
 log2-ratio at a given gene exceeded control regions 
(defined as 3–8 Mb up- and downstream of gene start/
end, respectively) by ≥ 0.5. Likewise, somatic focal dele-
tions were called when the  log2-ratio of control regions 
exceeded that of the gene by ≥ 0.3. All somatic amplifica-
tions and deletions underwent manual curation in IGV 
(v. 2.5.3) and were considered real if supported by the 

SNP allele ratio. Homozygous deletions  (log2-ratio ≤ −1) 
were defined as previously described [13].

Structural variants (SVs) were called using Svcaller 
(v. 1.0), SviCT (v. 1.0.1) [28], LUMPY (v. 0.3.0) [28], and 
SvABA (v. 1.1.0) [29]. Variants called by only one caller 
were discarded, except when only called by Svcaller. All 
variants were manually inspected in IGV.

Impact of SNVs and indels was annotated using 
Ensembl Variant Effect Predictor (ensemble-vep v. 
96.0) [30]. Splice site alterations were further assessed 
for impact using multiple in silico tools (MaxEntScan, 
NNSplice) [31, 32]. SVs and CNVs were not evaluated for 
impact. Variants were annotated as pathogenic or likely 
pathogenic based on the databases ClinVar or OncoKB 
[33, 34] or introduction of a premature stop or frameshift 
in the coding sequence.

mSINGS (v. 3.6) [35] was used for MSI analysis. Sam-
ples with a mSINGS fraction ≥ 0.2 were annotated as hav-
ing MSI.

To estimate the fraction of cfDNA that is tumor 
derived (ctDNA%), tumor cell purity was calculated using 
somatic SNVs with moderate or high impact. Additional 
details provided in Supplemental Methods. IchorCNA 
was additionally used to estimate ctDNA% [16, 17].

Germline variant calling and interpretation
GATK Haplotypecaller (v. 4.1.2.0) [21] and Strelka2 Ger-
mline (v. 2.9.10) [24] were used to call germline SNVs 
and indels. Only germline variants with variant allele 
frequency (VAF) > 0.4, moderate or high impact, and 
allele frequencies of < 0.005 in gnomAD were consid-
ered. CNVs were assessed using CNV Kit (v. 0.7.9) [27] 
and PureCN (v.1.2.3) [22]. Deletions were defined as 
segmented  log2-ratios of −1. All variants were manually 
inspected in IGV and annotated following the Ameri-
can College of Medical Genetics and Genomics (ACMG) 
guidelines [36].

Clonal hematopoiesis
Likely clonal hematopoiesis (CH) variants were called 
based on the targeted sequencing of DNA from the buffy 
coat using GATK Haplotypecaller and Strelka2 Germline 
[21, 24], and annotated with Ensembl Variant Effect Pre-
dictor [30]. CH variants were filtered out from both base-
line and progression samples. Additional details provided 
in Supplemental Methods and Supplementary Fig. 5.

ddPCR analyses
Droplet digital PCR (ddPCR) assays targeting two resist-
ance-associated SNVs in AR (Thr878Ala and Leu702His) 
were designed to assess the longitudinal dynamics of 
these mutations in plasma during first-line treatment. 
Additionally, for three mutations detected in matched 
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baseline and progression samples by targeted sequencing 
(TP53_Arg209LysTer6, PIK3CA_Glu542Lys, PIK3CA_
Glu545Lys), we used ddPCR assays previously designed 
in-house [37]. Additional details provided in Supplemen-
tal Methods and Supplementary Table 6.

Clinical outcomes and statistical analysis
See Supplemental Methods for detailed description. 
Briefly, the primary endpoint was PSA PFS, defined as 
the time from first-line treatment initiation until time 
of PSA progression. PSA progression was confirmed 
as per PCWG3 criteria, by a second PSA measure-
ment, 3 or more weeks later. PSA progression was also 
confirmed by imaging (radiographic progression) in all 
patients. As a secondary endpoint, we used OS defined 
as the time from treatment initiation till death from any 
cause. For clinical outcome analyses only pathogenic and 
likely pathogenic SNVs, SNVs annotated as high impact 
variants [21], amplifications, and homozygous deletions 
were included (i.e., structural variants and heterozygous 
deletions were excluded). Statistical analyses were con-
ducted in R (v. 3.6.3) and in GraphPad Prism 9 (v. 9.5.1) 
with two-sided p-values < 0.05 considered as statistically 
significant.

Clinically actionable alterations
Clinical actionability was annotated for all variants 
according to the knowledge base OncoKB, as previously 
described [34, 38, 39], considering actionability regard-
ing targeted therapy, in a PC-specific manner. OncoKB 
classifies actionable alterations into different levels, based 
on the extent of evidence available for each as a marker 
of response to treatment (see Fig.  5A for description of 
levels). Level 4 alterations were considered not clinically 
actionable. These alterations are ones for which there is 
compelling biological evidence that the biomarker is pre-
dictive of response to a drug, however generally based 
solely on preclinical data. Similarly all variants were 
also annotated employing the ESMO Scale for Clini-
cal Actionability of molecular Targets (ESCAT) [40, 41], 
which provides an evaluation of actionability in a Euro-
pean context.

Results
mCRPC cohort
Patients were enrolled at the time of mCRPC diagnosis 
at two tertiary hospitals in Denmark, and were further 
selected for this study based on having a ctDNA% of 3 
or more, as estimated by ichorCNA [16]. We and oth-
ers, have previously shown that higher ctDNA fraction is 
associated with worse outcomes in patients with mCRPC 
[17, 42, 43], and as such the current cohort represents 
patients with more aggressive disease (Supplementary 

Fig. 1). Patient characteristics are summarized in Table 1 
and Supplementary Table  2. Approximately 50% of the 
patients had metastastic disease at the time of prostate 
cancer diagnosis. None of the patients had received prior 
treatment with androgen receptor pathway inhibitors. 
The majority (71.7%) had received solely androgen depri-
vation therapy prior to inclusion, and 18.9% had received 
upfront docetaxel treatment. A total of 71.7% (38/53) of 
patients received enzalutamide as first-line treatment, 
whereas the remaining patients were treated with abi-
raterone. At the time of last follow-up, 88.7% (47/53) of 
patients had experienced PSA progression on first-line 
treatment and 69.8% (37/53) had died.

A total of 19.2% (10/52) of patients exhibited primary 
resistance to first-line treatment, defined as treatment 
failure by 3 months (Fig. 1). One patient was excluded as 
he switched treatment due to side-effects (Patient 1). 30% 
of patients (3/10) categorized as having primary resist-
ance achieved PSA50, within the first month, but rapidly 
progressed by 3 months (Fig. 1). None of the ten patients 
achieved PSA90. In contrast, 97.6% (41/42) of the 
patients not categorized as having treatment resistance 
achieved PSA50, and 64.3% (27/42) achieved PSA90.

Deep targeted sequencing of PC‑associated genes 
in plasma ctDNA and buffy coat DNA
Targeted sequencing was successfully performed on all 
samples resulting in median coverages of 1006X (range: 
310-1987X) for plasma samples and 306X (range: 253-
728X) for buffy coat samples. Somatic and germline 
SNVs and indels, structural variants and copy number 
alterations were called and curated manually in IGV as 
described in the Methods section. SNVs and indels were 
annotated for impact using Ensembl Variant Effect Pre-
dictor. Pathogenicity was annotated based on the data-
bases ClinVar or OncoKB [33, 34] or introduction of a 
premature stop or frameshift in the coding sequence. 
Only pathogenic and likely pathogenic variants, and vari-
ants predicted to be of high or moderate impact, were 
further considered (detailed further in Methods and 
Supplemental Methods sections). Likely CH variants 
detected in the buffy coat were filtered away from ctDNA 
analyses, both in baseline and progression samples.

Median ctDNA% was 12.9% (range: 3.0–72.8%) at 
baseline and 16.1% (range: 3.0–64.8%) at progression 
based on ichorCNA analysis of matched lpWGS [16, 
17]. These estimates were highly positively correlated to 
ctDNA% estimates from the deep targeted sequencing 
data, obtained from the VAF of likely driver mutation(s), 
defined as the somatic mutation(s) with the highest VAF 
and with moderate/high impact on protein function 
(rho = 0.849, p < 0.0001, Spearman’s rank correlation test). 
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Fig. 1  Overview of the most frequently altered genes in baseline samples from mCRPC patients. Genes with somatic or germline alterations 
in at least 3 patients are displayed. Only pathogenic and likely pathogenic SNVs, SNVs annotated as moderate or high impact, structural variants, 
amplifications, and heterozygous and homozygous deletions are shown. Patients are ordered according to months to PSA progression (top 
barplot, red line indicates cut-off for primary resistance defined as treatment failure within the first three months). ctDNA fraction as determined 
by ichorCNA is shown in the bottom barplot. *Indicates patients that were censored (see also Table 1). (AMP, amplification; HET-DEL, heterozygous 
deletion; HOM-DEL, homozygous deletion; MSI, microsatellite instability; SNV, small nucleotide variant; SV, structural variant)
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For simplicity, we present only the ctDNA% estimates 
based on ichorCNA analyses throughout the manuscript.

All but one patient (98.0%, 52/53) had at least one 
somatic or germline variant identified at baseline, and all 
had at least one at progression (100%, 18/18). The patient 
without any variants at baseline had a ctDNA% of 4.5% 
(Patient 1) (Fig.  1). The most frequently altered gene at 
baseline was AR, with amplification detected in 45.3% 
(24/53) of patients and SVs in 35.8% (19/53) of patients 
(Fig.  1). The AR enhancer region was also commonly 
amplified (25/53, 47.2%), and this often co-occurred with 
amplification of the AR gene (20/25, 80.0%). In total, 
67.9% (36/53) of patients had at least one genomic altera-
tion in the AR region at mCRPC diagnosis.

Other commonly detected alterations at baseline 
included somatic SNV/indels, copy number losses and 
SVs in TP53 (22/53, 41.5%), TMPRSS2:ERG fusions 
(20/53, 37.7%), and somatic SNV/indels, copy num-
ber losses and SVs in PTEN (19/53, 35.8%), as well as a 
broad range of both somatic and germline alterations in 
ATM (14/53, 26.4%) (Fig.  1). Of note, 50.9% (27/53) of 
patients had at least one somatic or germline alteration 
in the homologous recombination repair (HRR) pathway, 
defined as genes included in the PROfound trial [44], i.e., 
BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CHEK1, 
CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, 
RAD51D, and RAD54L, as well as NBN, RAD50, FANCA, 
ATR  and MRE11.

Furthermore, 3.8% (2/53) of patients were found to have 
microsatellite instability (MSI) (Fig.  1). One of the two 
patients with MSI had a homozygous deletion of MLH1, 
as well as a missense variant of unknown significance in 
MSH2 (Gln252Arg), and the other had a missense variant 
of unknown significance in MSH3 (Thr230Ala).

Germline alterations were detected in 22.6% (12/53) of 
patients, with two of these harboring alterations in two 
genes (Supplementary Fig.  2). Of these, only 6 patients 
(11.3%, 6/53) had pathogenic or likely pathogenic variants 
according to ACMG classification; most commonly in 
ATM (2/53, 3.8%). At total of 15.1% (8/53) of patients had 
germline alterations in HRR genes, of which 5 patients 
had pathogenic or likely pathogenic variants (9.4%, 5/53). 
The remainder were variants of uncertain significance, 
however predicted to have high/moderate impact on 
function. All germline alterations detected were SNVs.

Variants likely to be CH were detected in the buffy coat 
samples of 7 patients (7/53, 13.2%) at either baseline and/
or progression (Supplementary Table  3). Variants were 
noted in BRCA2, CHEK2, DNMT3A, KMT2C, TP53 
and SF3B1. The variants in TP53 and SF3B1 were clas-
sified as clonal hematopoiesis of indeterminate potential 
(CHIP) variants, defined as pathogenic variants with a 
VAF ≥ 2% in individuals without evidence of hematologic 

malignancy, dysplasia, or cytopenia [45]. All likely CH/
CHIP variants could be found in the matching plasma 
circulating cell-free DNA sample as well, with generally 
comparable VAFs (Supplementary Table 3).

Genomic correlates of clinical outcomes
To identify candidate prognostic biomarkers we first 
investigated for potential associations between the most 
commonly identified alterations in our cohort at baseline 
(amplification of AR/AR enhancer, PTEN and TP53 alter-
ations) and patient outcomes defined by PSA progression 
free survival (PFS) and overall survival (OS).

AR/AR enhancer amplification and TP53 alterations 
were not statistically significantly associated with PFS or 
OS in our cohort (BH adj. p > 0.05, univariate and mul-
tivariate cox regression analysis, Supplementary Table 4). 
In contrast, alterations in PTEN were significantly associ-
ated with shorter PFS in univariate cox regression analy-
sis (HR = 3.92, 95% CI: 1.75 − 8.79, BH adj. p = 0.0027, 
Fig.  2A) and were borderline significant after adjust-
ment for ctDNA% (HR = 2.73, 95% CI: 1.31–6.55, BH 
adj. p = 0.051, Fig.  2A). Alterations in PTEN were also 
associated with significantly worse OS in univariate cox 
regression analysis (HR = 4.90, 95% CI: 2.12–11.32, BH 
adj. p = 0.0005, Fig. 2A), also after adjusting for ctDNA% 
(HR = 3.29, 95% CI: 1.38–7.88, BH adj. p = 0.015, Fig. 2A). 
In agreement with this, Kaplan Meier analyses showed 
that median PFS was significantly shorter for patients 
with alterations in PTEN (4.2 months vs. 9.2 months, 
log-rank test, p = 0.0003, Fig.  2B), as was median OS 
(6.4 months vs. 28.8 months, log-rank test, p < 0.0001, 
Fig. 2B).

We further examined the biomarker potential of sev-
eral pathways commonly altered in mCRPC, includ-
ing AR signaling, cell cycle regulation, WNT signaling, 
the PI3K pathway, the HRR pathway, and chromatin 
modulation by grouping genes into gene sets [46–48]. 
Alterations in genes associated with cell cycle regulation 
(CCND1, CDKN1B, CDKN2A, and RB1) were associated 
with significantly shorter PFS (univariate Cox regres-
sion, HR = 2.73, 95% CI: 1.17 − 6.34, BH adj. p = 0.0252, 
Fig.  2A), and were borderline significantly associated 
with worse PFS after correcting for ctDNA% (HR = 2.38, 
95% CI: 1.00–5.62, BH adj. p = 0.051, Fig.  2A). Altera-
tions in genes involved in cell cycle regulation were also 
associated with significantly shorter OS (univariate Cox 
regression analysis, HR = 4.14, 95% CI: 1.64–10.46, BH 
adj. p = 0.0052, Fig. 2A), which remained significant after 
adjusting for ctDNA% (HR = 3.75, 95% CI: 1.44–9.74, BH 
adj. p = 0.015, Fig.  2A). Kaplan Meier analyses further-
more showed that median PFS was significantly shorter 
for patients with alterations in cell cycle regulators (4.2 
vs. 7.9 months, log-rank test, p = 0.0160, Fig. 2C), as was 
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median OS (6.0 months vs. 28.7 months, log-rank test, 
p = 0.0011, Fig. 2C).

Alterations in chromatin modulators (ARID1A, CHD1) 
were additionally found to be significantly associated 
with poorer PFS in univariate Cox regression (HR = 8.76, 
95% CI: 2.27- 33.79, BH adj. p = 0.0036, Fig. 2A), also after 
adjusting for ctDNA% (HR = 5.37, 95% CI: 1.35–21.39, 
BH adj. p = 0.025, Fig.  2A). The chromatin modulator 
gene set failed the Cox proportionality test with OS as an 
endpoint. Median PFS was also significantly shorter for 
patients with alterations in chromatin modulators (1.9 
months vs. 8.0 months, log-rank test, p = 0.0002, Fig. 2D), 
as was median OS (6.4 months vs. 28.7 months, log-rank 
test, p = 0.0003, Fig. 2D).

Alterations in the PI3K signaling pathway were associ-
ated with poorer PFS and OS in univariate Cox regres-
sion, although this was no longer statistically significant 
upon Benjamini–Hochberg correction, nor was it sig-
nificant when adjusting for ctDNA% (Supplementary 
Table  4). Of note this association was mainly driven by 
alterations in PTEN (Fig.  2, Supplementary Table  4). 
Alterations in AR signaling, the HRR pathway and WNT 
signaling were not associated with PFS or OS in univari-
ate or multivariate Cox regression (BH adj. p > 0.05, Sup-
plementary Table 4).

In summary, in our mCRPC cohort, we found sig-
nificant associations between poor PFS and poor OS 
and genomic alterations in PTEN, cell cycle regulator 
genes, and chromatin modulator genes (Fig.  2A-D). For 
independent clinical validation, we employed publicly 
available data from Annala et  al. [48], who performed 
genomic profiling of ctDNA from 202 mCRPC patients 
prior to starting enzalutamide or abiraterone treatment. 
We successfully validated the association between altera-
tions in PTEN and chromatin modulators and worse PFS 
in this independent cohort (log-rank test, p = 0.0129 and 
p = 0.0016, respectively), as well as worse OS (log-rank 
test, p = 0.0014 and p = 0.0002, respectively) (Fig. 2E, G). 
These alterations were also associated with worse out-
comes (PFS, OS) in univariate Cox regression (Supple-
mentary Table 5), however not after adjusting for ctDNA 
%. Shorter PFS and OS were noted for patients with alter-
ations in cell cycle regulators in the Annala et al. cohort 
as well, although not statistically significant (log-rank 

test, p = 0.2152 for PFS; log-rank test, p = 0.2097 for OS, 
Fig. 2F, and univariate Cox regression in Supplementary 
Table 5).

Genomic candidate biomarkers of intrinsic resistance 
to second‑generation anti‑androgens
We further explored whether certain alterations detected 
in our mCRPC cohort were enriched for in patients with 
primary resistance to enzalutamide or abiraterone ace-
tate treatment (non-responders), compared to patients 
sensitive to treatment (responders). Primary resist-
ance was defined as treatment failure by 3 months. For 
independent validation, we again used the dataset from 
Annala et al. [48].

In our cohort, BRAF amplification and loss of CHD1 (a 
chromatin modulator) were only found in patients with 
primary resistance (20.0% of non-responders compared 
to 0% of responders for both genes, p < 0.05, Fisher’s 
exact test, Fig. 3A; enriched in non-responders (p < 0.05, 
Fig. 3B). This was also the case in the Annala et al. data-
set, with BRAF alterations and CHD1 loss only being 
identified in patients with primary resistance to first-line 
treatment with enzalutamide or abiraterone, although 
this did not reach statistical significance (both p = 0.08, 
Fisher’s exact test, Fig.  3C). Furthermore, alterations in 
HRR genes were enriched for in non-responders in both 
our dataset and the Annala et al. dataset, but only statisti-
cally significant in the latter (Fig. 3B and Fig. 3D). TP53 
alterations were markedly enriched for in the Annala 
et al. dataset in non-responders (54% vs. 20% in respond-
ers, p = 5 ×  10–6), but not in our dataset (50% with altera-
tions in non-responders vs. 40% in responders, p = 0.73). 
This divergence may be attributed to a variety of fac-
tors, such as our relatively limited population size, dif-
ferences in the composition of the patient cohorts (e.g. 
43% of patients in Annala et al. had undetectable ctDNA 
levels) or differences in the assays employed for ctDNA 
sequencing.

Interestingly, we found that TMPRSS2 fusions, primar-
ily composed of TMPRSS2:ERG fusions, were strongly 
enriched for in responders (Fig. 3B, p < 0.05, Fisher’s exact 
test). There were only few patients with TMPRSS2 or 
ERG alterations in the Annala et al. dataset.

Fig. 2  Genomic correlates of clinical outcomes. a Univariate and multivariate Cox regression using PSA PFS and OS as endpoints. Multivariate 
analyses corrected for ctDNA fraction. b-d Kaplan Meier plots of patients with alterations in PTEN, cell cycle regulators (CCND1, CDKN1B, CDKN2A, 
RB1), or chromatin modulators (ARID1A, CHD1), compared to patients without alterations, using PSA PFS and OS as endpoints. e-g Kaplan-Meier 
plots for same genes as in b-d, however employing publicly available data from Annala et al. [48]. P-values in Kaplan-Meier plots based on log-rank 
test. Only pathogenic and likely pathogenic SNVs, SNVs annotated as high impact variants, amplifications, and homozygous deletions were 
included (i.e., structural variants and heterozygous deletions were excluded)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Lastly, we noted that one patient in our cohort with 
primary resistance had a pathogenic variant in CTNNB1 
likely leading to WNT pathway activation, which has pre-
viously been associated with resistance to second-gen-
eration anti-androgens [6] (data not shown, Patient 5). 
Additionally, we noted biallelic TP53 and RB1 loss in one 
patient with primary resistance, which has been associ-
ated with a neuroendocrine phenotype and resistance to 
second-generation anti-androgens [49] (Fig. 1, Patient 2).

Genomic changes in AR during first‑line treatment 
with second generation anti‑androgens
To identify genomic alterations that may be associated 
with acquired resistance to enzalutamide or abiraterone 
acetate, we performed targeted sequencing of plasma 

samples drawn at progression (at time of treatment ces-
sation) for 18 of the 53 patients (Fig.  4, Supplementary 
Fig. 3). Of note, three of the 18 patients had no additional 
genomic alterations identified at progression (Fig. 4A).

An increase in the proportion of patients with at least 
one alteration in the AR region was noted at progres-
sion compared to baseline (16/18 (89%) vs. 13/18 (72%), 
respectively, p = 0.40, Fisher’s exact test; Supplementary 
Fig.  3). The emergence of known resistance mutations 
[5] in AR (Thr878Ala (n = 3) or Leu702His (n = 2)) was 
noted in 22% of patients (4/18), with one patient acquir-
ing both mutations (Figs. 4A and B, Patient 23). Interest-
ingly, AR resistance mutations appeared to be mutually 
exclusive with alterations in other genes likely confer-
ring resistance (e.g. CTNNB1 mutation, TP53/RB1 loss 

Fig. 3  Genomic correlates of intrinsic resistance to second-generation anti-androgens. a Frequency of alterations in patients with primary 
resistance to first-line enzalutamide or abiraterone acetate compared to patients without. Primary resistance was defined as treatment failure 
by 3 months, and only genes with alterations in at least two patients were considered. (Fisher’s exact test, *p-value < 0.05) b Comparison 
of the mutational frequencies of alterations in patients with primary resistance to enzalutamide or abiraterone acetate relative to patients 
that responded to treatment. The difference in relative frequency is shown on the x-axis and the -log10(p-value) (Fisher’s exact test) is shown 
on the y-axis. Genes that were significantly enriched for in non-responders are shown in red and those enriched for in responders in blue (p-value 
< 0.05). c Frequency of alterations in patients with primary resistance for genes in (a) based on the Annala et al. cohort [48] d Analysis as in (b), 
however based on the Annala et al. dataset
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Fig.  4A). Four additional patients had alterations solely 
in the AR region arising at progression, all four of which 
acquired structural variants in AR (Fig. 4A).

We went on to examine the longitudinal dynamics 
of these AR mutations employing mutation-specific 
ddPCR assays (Fig. 4C). We found that these alterations 
were in fact detectable in 2 of the 3 patients prior to 
detectable PSA increase (63–126 days earlier, Patient 
28 and 23). In the remaining patient the mutation was 
detectable at the time of PSA increase (Patient 21). Of 
note, in Patient 28, the AR Thr878Ala mutation was 
also detectable by ddPCR at a very low VAF at the 
time of treatment initiation, suggesting the early pres-
ence of enzalutamide-resistant tumor cells. The patient 
had only been treated with LHRH (luteinizing hor-
mone-releasing hormone) agonist previously. Higher 
sequencing depth would be required to call such low-
VAF mutations using sequencing-based approaches.

Additional emerging genomic alterations during first‑line 
treatment
Besides mutations in AR, we detected emerging altera-
tions in multiple other genes (Fig.  4A, Supplementary 
Fig.  3), including the activating Ser45Phe mutation 
in CTNNB1, which has previously been implicated 
in enzalutamide resistance [50, 51]. We furthermore 
detected the emergence of an SV of unknown impact 
in RB1, along with a heterozygous deletion of TP53 
and a splice variant of unknown significance in TP53 
(Patient 40, Fig.  4A), as well as the emergence of a 
structural variant in RB1 in a patient with a TP53 
frameshift mutation at baseline (Patient 17). Combined 
loss of RB1 and TP53 has, as already mentioned, been 
reported to promote lineage plasticity to a neuroendo-
crine phenotype and resistance to antiandrogen ther-
apy [49, 52]. Additional alterations identified have not 
previously been associated with resistance to second-
generation androgens and may reflect novel resistance 
mechanisms (i.e., ARID2, ARID1A, KMT2C) (Fig.  4A, 
Supplementary Fig. 3).

As for AR mutations, we considered for a subset of 
patients, whether we could employ changes in SNVs 
detected at baseline, employing patient-specific ddPCR 

assays, to monitor treatment response (Supplementary 
Fig. 4). Overall, we found that changes in VAFs paral-
leled PSA dynamics, with SNV clearance potentially 
indicating greater response to treatment (Supplemen-
tary Fig.  4C and Supplementary Fig.  4D). At a single 
time point (Supplementary Fig.  4B, Patient 15), we 
observed decreases in the VAF despite increasing PSA 
values, the physiological and clinical significance of 
which is not clear. These results are preliminary, how-
ever highlight potential challenges in employing VAFs 
of single SNVs for monitoring response.

Clinically actionable alterations in ctDNA of newly 
diagnosed mCRPC patients
OncoKB [34], a curated precision oncology knowl-
edge database developed by Memorial Sloan Kettering 
Cancer Center (New York, USA), was used to classify 
variants into tiers of clinical actionability, as relating 
to treatment, in a PC-specific manner. A total of 54.7% 
(29/53) of patients had at least one clinically action-
able alteration at baseline, including 41.5% with a level 
1 alteration as the highest level alteration, and 13.2% 
with a level 3B alteration as the highest level (Fig. 5A). 
In addition, we classified variants with the ESMO 
Scale for Clinical Actionability of molecular Targets 
(ESCAT) [40, 41], to consider clinical actionability in 
a European setting as well, as OncoKB is based on an 
FDA-regulatory context. Employing ESCAT, 49.0% of 
patients had at least one clinically actionable alteration 
at baseline, however only 13.2% had tier 1 alterations. 
Differences were largely accounted for by alterations 
in the HRR pathway, that are FDA-recognized bio-
markers predictive of response to PARP inhibition (as 
monotherapy or in combination with enzalutamide), 
but which have not received EMA approval (e.g. ATM, 
CDK12, PALB2).

The majority of clinically actionable alterations were 
in HRR genes (Fig. 5B). Additional clinically actionable 
alterations were identified in the PI3K/AKT pathway, 
and two patients had MSI phenotype. Thirteen patients 
(13/53, 24.5%) had clinically actionable alterations 
in multiple genes. Only four patients had clinically 

Fig. 4  Emerging genomic alterations during first-line treatment with second generation anti-androgens. a Oncoplot of variants emerging 
at progression (n = 18). b Overview of variants in matched baseline and progression samples from four patients that acquired AR resistance 
mutations at progression. VAFs for the corresponding variants, as well as changes in PSA and ctDNA% from baseline to progression are shown. 
c Patient-specific ddPCR assays showing the longitudinal dynamics of AR resistance mutations. VAF based on ddPCR is shown, as well as PSA 
changes from baseline to progression. Open circles represent time points where the variant was not detected based on ddPCR. Shaded region 
indicates time from initial PSA progression to treatment discontinuation. (AMP, amplification; HET-DEL, heterozygous deletion; HOM-DEL, 
homozygous deletion; SNV, small nucleotide variant; SV, structural variant). *SNV present at baseline

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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actionable alterations of germline origin (4/53, 7.5%), 
all of which were in HRR genes (Fig.  5B). Only few 
potential additional clinically actionable alterations 
were identified at the time of progression (one patient 
with heterozygous deletion of FANCA, and one with a 
structural variant in PTEN expected to result in a loss 
of function alteration) (Supplementary Fig. 3).

Discussion
In this study we successfully sequenced plasma ctDNA 
and germline DNA (buffy coat) samples from a Danish 
cohort of 53 patients with mCRPC prior to commenc-
ing first-line treatment with enzalutamide or abirater-
one acetate, and for a subset at progression, using deep 
targeted sequencing with a PC-tailored gene panel. In 
doing so we identified both known and novel predictive 
and prognostic biomarkers, as well as clinically action-
able alterations providing additional therapeutic options. 
Our results provide real-world evidence of the significant 
potential of genomic profiling of ctDNA to inform treat-
ment in patients with mCRPC.

Consistent with prior studies, loss of function altera-
tions in PTEN and in cell cycle regulators (CCND1, 
CDKN1B, CDKN2A, RB1) were found to confer worse 
outcomes (PFS/OS) [47, 48, 53, 54]. We further found 
perturbations in chromatin modulators (ARID1A, CHD1) 
to be significantly associated with worse outcomes, 
with a median PFS of only 1.9 months compared to 8 
months and a median OS of 6.4 months compared to 
28.7 months, for patients with alterations vs. those with-
out. These findings were validated in an external publicly 
available data set from Annala et al. [48]. Loss of CHD1 
has previously been linked to an increased risk of post-
operative metastasis following radical prostatectomy and 
has been found to promote spontaneous metastasis for-
mation in animal models of prostate cancer [55], suggest-
ing that these alterations may be associated with more 
aggressive disease. ARID1A has not, to our knowledge, 
been reported to be associated with poor outcomes in 
patients with mCRPC. These findings warrant validation 
in larger cohorts.

A significant proportion of patients (19.2%) exhibited 
primary resistance to first-line enzalutamide or abira-
terone acetate treatment. In these patients we detected 
enrichment for BRAF amplification and CHD1 loss, as well 

as alterations well-known to confer resistance to second-
generation anti-androgens (e.g. activating alterations in 
CTNNB1, and combined loss of TP53 and RB1). BRAF 
alterations and CHD1 loss were also identified solely in 
patients with primary resistance in the Annala et al. dataset 
[48]. To our knowledge BRAF amplification has not previ-
ously been described in patients as a mechanism of resist-
ance to enzalutamide or abiraterone treatment, however 
BRAF has been identified as a strong modulator of enzalu-
tamide sensitivity in a CRISPR-Cas9 resistance screen, and 
activating BRAF mutations have been detected in patients 
with primary enzalutamide resistance [56]. CHD1 loss has 
previously been found to be enriched in mCRPC patients 
with primary resistance to abiraterone and enzalutamide 
based on analysis of circulating tumor cells [57], and low 
CHD1 expression has been reported to be associated with 
shorter response to enzalutamide but not abiraterone [58]. 
Both patients with CHD1 loss in our cohort were treated 
with enzalutamide. Together these data lend clinical vali-
dation to recent findings from an in  vivo shRNA screen 
identifying CHD1 loss as a key mediator of enzalutamide 
resistance [58]. Activating alterations in CTNNB1 were 
detected, both in patients with primary resistance and 
patients progressing on treatment, consistent with prior 
clinical reports of WNT pathway activation promoting 
resistance to second-generation anti-androgens [4, 6]. 
Similarly, combined TP53 and RB1 loss was detected in 
one patient with primary resistance and one with a short-
lived response to enzalutamide, as well as in one patient 
at the time of progression, consistent with multiple prior 
studies demonstrating that combined TP53/RB1 loss pro-
motes a shift to a neuroendocrine phenotype and resist-
ance to antiandrogen therapy [49, 52]. Lastly, we noted 
enrichment for TMPRSS2 (primarily TMPRSS2:ERG) 
alterations in patients that responded to enzalutamide or 
abiraterone treatment. This is consistent with data from 
an in vivo bone tumor growth model showing that enzalu-
tamide treatment is more effective in tumours expressing 
ERG [59], as well as with an earlier clinical study demon-
strating that patients having PSA decline during abirater-
one treatment were significantly more likely to have ERG 
rearrangements [60]. It is further in line with recently 
published data from the ProBio trial demonstrating that 
patients with TMPRSS2:ERG fusions benefit longer from 
androgen receptor pathway inhibitor treatment than those 

(See figure on next page.)
Fig. 5  Clinically actionable alterations. a Proportion of clinically actionable alterations based on the highest-level alterations identified for each 
patient, annotated based on OncoKB and ESCAT (the different levels of clinically actionable alterations according to OncoKB are shown adapted 
from https:// www. oncokb. org/, and for ESCAT from Mateo et al. [40] and Mosele et al. [41]. Only relevant tiers are noted herein). b Overview 
of clinically actionable alterations detected in the cohort and as annotated by OncoKB and ESCAT. (AMP, amplification; HET-DEL, heterozygous 
deletion; HOM-DEL, homozygous deletion; MMR, mismatch repair; SNV, small nucleotide variant; SV, structural variant)

https://www.oncokb.org/
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Fig. 5  (See legend on previous page.)
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without these alterations [15]. Taken together these results 
strongly suggest that genomic profiling of ctDNA prior to 
commencing first-line treatment with second-generation 
anti-androgens may be of value in identifying patients that 
are unlikely (or more likely) to respond to treatment.

Additional alterations that emerged during first-line 
treatment included mutations in the AR gene that are 
known to be involved in resistance to second-generation 
anti-androgens (e.g. AR Thr878Ala). These mutations 
were found to be mutually exclusive with other alterations 
believed to confer resistance, such as CTNNB1 activating 
mutations and combined TP53/RB1 loss. Other altera-
tions identified at progression have not previously been 
linked to resistance to enzalutamide or abiraterone (e.g. 
ARID2, ARID1A, KMT2C loss), and further studies are 
needed to determine whether these play a role in resist-
ance acquisition or whether these are passenger muta-
tions. Three of the 18 patients had no additional genomic 
alterations identified at progression, suggesting additional 
resistance mechanisms not detected with our targeted 
gene panel. These results emphasize significant heteroge-
neity in developing resistance to treatment with second-
generation anti-androgens and highlight the potential of 
genomic profiling of ctDNA in detecting mechanisms of 
acquired resistance in the setting of first-line treatment of 
mCRPC. Our results furthermore provide clinical valida-
tion of resistance candidates (e.g. BRAF, CHD1) identified 
in prior in vitro and in vivo resistance screens with sec-
ond-generation anti-androgens.

Employing ddPCR we demonstrated that AR resistance 
mutations could be detected several months prior to PSA 
increases, including in one patient prior to initiation of 
an androgen receptor pathway inhibitor. These results 
are preliminary and the clinical consequences are unclear 
(i.e. optimal timing for switching treatment), however 
these results warrant further investigation. In contrast, 
we found that monitoring treatment response, by follow-
ing the VAFs of single SNVs detected at baseline, largely 
paralleled PSA dynamics, suggesting that this approach 
does not provide added clinical utility.

About half of the patients in our cohort had a clinically 
actionable alteration, in particular in HRR genes, and thus 
could potentially be eligible for treatment with a PARP 
inhibitor (monotherapy or in combination with a second-
generation anti-androgen). It is however important to note 
that the degree of response to PARP inhibition varies across 
the HRR genes, with the greatest response seen in patients 
with BRCA1/2 loss and less in those with for instance ATM, 
CDK12 or CHEK2 loss-of-function alterations [61–63]. Fur-
ther studies are needed to optimize selection of patients and 
improve treatment strategies in patients with non-BRCA  
HRR alterations. Of further note, a significant proportion 
of patients in our cohort had loss-of-function alterations 

in PTEN (26%), which may benefit from combination ther-
apy with a second-generation anti-androgen and an AKT 
inhibitor. A recent phase III trial demonstrated significantly 
improved radiographical PFS with combined abiraterone 
and ipatasertib (AKT inhibitor) treatment vs. abiraterone 
alone in mCRPC patients with PTEN loss [64], and pos-
sibly improved overall survival (genomic PTEN loss, HR: 
0.76, 95% CI 0.54–1.07; and PIK3CA/AKT1/PTEN altera-
tions, HR: 0.70, 95% CI 0.51–0.96) [65]. Clinical trials with 
additional AKT inhibitors are underway. The majority of 
clinically actionable alterations identified in our study were 
somatic, however 7.5% of patients had germline alterations, 
which bear additional implications with regards to genetic 
counselling of the patient and family members. This high-
lights the need for both somatic and germline testing in this 
population. Interestingly, few additional clinically actionable 
alterations were identified at the time of progression, which 
is in line with recent evidence suggesting that there is lim-
ited evolution of the actionable metastatic cancer genome 
under therapeutic pressure [66]. Lastly, our findings contrast 
the landscape of clinically actionable alterations in an Amer-
ican, as well as a European context, and identify consider-
ably fewer level 1 alterations based on ESCAT in this dataset 
(41.5% vs. 13.2%, OncoKB vs. ESCAT). This difference was 
largely driven by HRR genes, as 42% of patients had a level 
I alteration in HRR genes based on OncoKB, while only 
9% had a level I alteration based on ESCAT (restricted to 
BRCA1/2 loss-of-function alterations). This suggests in part 
a more conservative evaluation of actionability and of regu-
latory drug approvals in Europe.

Our study further confirms that a significant propor-
tion of patients with mCRPC have CH variants, as 9.4% 
of patients harbored such variants at baseline and 15.8% 
at progression [13, 67]. Although none of the specific CH 
variants identified in our cohort were classified as clini-
cally actionable, some occured in clinically actionable 
genes (i.e., BRCA2, CHEK2), emphasizing the importance 
of including matched germline samples when performing 
deep sequencing of plasma cfDNA samples, to filter CH 
variants in order to avoid false positive somatic variants.

Lastly, our cohort only consists of 53 patients and only 
patients with more than 3% ctDNA at baseline. The cohort 
represents patients with more aggressive disease and 
shorter PFS/OS. The proportion of certain HRD altera-
tions was higher in our cohort than in previously reported 
mCRPC populations [68, 69], e.g. BRCA1 and ATM. We 
speculate that this may be attributed to having selected 
patients with ctDNA% of 3 or more, as we, and others, 
have previously shown that prostate cancer patients with 
germline DNA repair gene alterations have poorer out-
comes (in particular BRCA2 and ATM germline vari-
ants) [70, 71], and this may also be the case for somatic 
alterations [72, 73]. Targeted analysis of patients with low 
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ctDNA% is warranted to ensure a more representative 
cohort. The cohort furthermore represents a relatively 
homogenous Danish population, recruited at only two 
Urology departments, and results may in part reflect clini-
cal practice at these departments at the time of recruit-
ment (2016–2018). Nevertheless, despite the homogenous 
population, the modest population size, and the exclusion 
of patients with low ctDNA levels, the genomic profile of 
our population is similar to that in other published studies 
profiling patients with mCRPC [68, 69, 74]. Additionally 
several of the prognostic and predictive markers identi-
fied have also been identified in prior studies of mCRPC 
populations [47, 48, 53, 54], as well as validated in the cur-
rent study employing the cohort from Annala et  al. [48]. 
A further limitation of the current study is that a panel of 
genes known to be of relevance in PC was employed, thus 
not permitting the discovery of entirely novel biomarkers.

Conclusion
Genomic profiling is not routinely performed to guide 
treatment in patients with newly diagnosed mCRPC. Our 
understanding of the genomic landscape of prostate can-
cer has however significantly expanded in recent years, 
as has the development of targeted treatments requiring 
specific genomic alterations for eligibility. Our study dem-
onstrates that deep targeted sequencing of plasma ctDNA 
has significant clinical potential to inform treatment in 
the first-line setting, including identifying patients that 
are unlikely to respond to treatment, providing prog-
nostic information, detecting mechanisms of resistance 
emergence during treatment, and informing on additional 
targeted therapy options. Additional larger prospective 
studies are urgently needed to address the clinical utility, 
and optimized implementation, of these ctDNA-based 
biomarkers in the management of mCRPC.
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