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Abstract 

Background The identification of molecular features characterizing metastatic disease is a critical area of oncology 
research, as metastatic foci often exhibit distinct biological behaviors compared to primary tumors. While the focus 
has largely been on the neoplastic cells themselves, the characterization of the associated stroma remains largely 
underexplored, with significant implications for understanding metastasis.

Main body By employing spatially resolved transcriptomics, we analyzed the transcriptional features of primary 
breast adenocarcinoma and its associated metastatic foci, on a representative set of microregions. We identified 
a stromal metastatic (Met) signature, which was subsequently validated across transcriptomic reference human breast 
cancer (BC) datasets and in spatial transcriptomics of a murine model.

Conclusion We discuss the potential of a stromal Met signature to pinpoint metastatic breast cancer, serving 
as a prognostic tool that can provide a foundation for the exploration of tumor-extrinsic molecular hallmarks of BC 
metastatic foci.
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Background
The identification of molecular features that character-
ize metastatic disease remains a central focus of research 
across various types of malignancies [1, 2]. Understand-
ing the mechanisms that drive metastatic foci, which 
diverge significantly from the biology of primary tumors, 
and identifying new biomarkers specifically associ-
ated with metastatic disease, is of critical importance in 
oncology [3]. Most research efforts dedicated to uncover-
ing the molecular identity of metastases have predomi-
nantly focused on studying the biological properties of 
the neoplastic elements [4, 5]. As a result, the characteri-
zation of the stroma associated with metastatic foci has 
been insufficiently explored and continues to be an area 
that demands substantial further investigation.

Main text
We detail the output of the in situ transcriptional profile 
based on a panel of 1824 cancer-associated gene tran-
scripts (Nanostring Cancer Transcriptome Atlas) in 24 
microregions from a primary breast adenocarcinoma 
lesion and the paired metastatic foci from two distinct 
hepatic lesions (Met) (Fig.  1A, Supplementary Table  1). 
The objective of this analysis was to inform on the tran-
scriptional profile of the Cytokeratin- Vimentin + (CK-
Vim +) stromal components within the context of the 
neoplastic proliferation in both primary tumor (PT) and 
Met regions.

The unsupervised analysis of gene expression levels 
demonstrated a clear separation of the regions selected 
for profiling, distinguishing them based on their epi-
thelial-tumor (CK + Vim-) or stromal (CK-Vim +) iden-
tity, as well as their association with either PT or Met 
microregions (Fig. 1B). This analysis underscored a pro-
nounced transcriptional divergence between PT and 

Met, a difference that was also specifically inherent to 
the stromal regions within the neoplastic foci. Through 
the comparison of stromal microregions between PT 
and Met, we identified a transcriptional signature con-
sisting of 129 genes that were significantly upregulated 
and 99 genes that were downregulated in Met stromal 
areas as compared to PT ones (Fig. 1C, FDR ≤ 5%, abso-
lute FC ≥ 1.5, Supplementary Table  2). Specifically, the 
stromal compartment within metastatic foci showed an 
enrichment of gene programs associated with cytokine/
cytokine receptor signaling, MAPK signaling, and 
FGFR3 signaling pathways (Fig.  1D, Supplementary 
Table 3).

In contrast, the stroma of PT showed enrichment 
in gene programs related to syndecan interactions, 
extracellular matrix remodeling, and MET signal-
ing pathways (Fig.  1E, Supplementary Table  3). Genes 
associated with the Complement system and Lym-
phocyte regulation pathways exhibited a marked dif-
ferential expression between the PT and Met regions 
of interest (ROIs) (Fig.  1F-G, Supplementary Table  4). 
Specific genes involved in the complement system, 
such as  C1R, C1S and C3 showed significant upregu-
lation in PT stromal regions, indicating a more active 
involvement of pattern recognition elements of classi-
cal complement pathway. Conversely, genes involved 
in lymphocyte regulation, including the transcription 
factors TBX21 and EOMES and IL-2-inducible kinase 
ITK were upregulated in Met regions. Moreover, gene 
expression differences underlined divergence of ECM 
and mesenchymal gene-associated transcripts between 
PT and Met, including COL1, COL3 and COL6 genes, 
as well as ITGAV and ZEB1 genes upregulated in PT, 
and LAMB3, LAMC3, and NCAM1 upregulated in 
Met (Supplementary Table 2). Transcripts upregulated 

(See figure on next page.)
Fig. 1 A Digital Spatial profiling experiment of 24 ROIs selected within epithelial-tumor Pan-Cytokeratin +  (CK+  Vim−) (green signal) and stromal 
Vimentin +  (CK−Vim+) (red signal) of primary breast adenocarcinoma lesion (PT) and corresponding hepatic metastatic foci (Met). Original 
magnification, × 50. Scale bar, 250 μm. B Principal component projection (PCA) of the 24 regions of interests (ROIs) within primary breast cancer 
tumor and liver metastases based on the 457 most highly variable genes profiled by Nanostring Digital Spatial Profiling. Principal component 1 
(PC1) splits the ROIs by epithelial-tumor  (CK+Vim−) or stromal  (CK−Vim.+) component, while Principal component 2 (PC2) splits ROIs by PT and Met. 
C Hierarchical clustering based on the stromal Met/PT spatial signature. The signature discriminates Met and PT stromal ROIs. D-E Pathway 
enrichment of 129 stromal Met spatial signature genes and 99 stromal PT spatial signature genes (Reactome Pathway library). Significant pathways 
are highlighted in blue (adj-p.value < 0.05), with the names of the most significant ones labeled in the figure. F-G Expression of “Complement 
System” and “Lymphocyte Regulation” genes in Met and PT stromal ROIs showed significant differences between the two ROI groups. The 
heatmap left bar indicates the significant differentially expressed genes between Met and PT ROIs (orange). H Distributions and statistical 
comparison of the Met/PT spatial signature combined expression in breast cancer primary-metastasis pairs from the GEICAM trial (n = 70 pairs), 
from the University of North Carolina Rapid Autopsy Program dataset (RAP-study; n = 67 pairs), and Aftimos et al. AURORA dataset (n = 108 pairs). 
The paired t-test p-values confirm that the stromal Met/PT spatial signature genes differ significantly between metastatic and primary tumors 
samples, with Met genes upregulated in metastatic samples and PT genes in primary tumors. I Log-FC values from the comparison between Met vs 
PT in four different datasets, considering only the stromal Met/PT spatial signature genes whose differential expression is consistent across datasets. 
Positive log-FC values indicate genes upregulated in Met (red cells in the heatmap), while negative log-FC values indicate genes downregulated 
in Met (blue cells in the heatmap)
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Fig. 1 (See legend on previous page.)
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in Met regions also included known players involved 
in primary tumor progression and metastasis such as 
CCL2 [6] and CCL4 [7].

To validate the general relevance of the signature 
derived from spatial profiling of a limited number of PT 
and Met stromal microregions, the expression of upregu-
lated and downregulated genes was analyzed in two refer-
ence datasets of primary breast cancers (BCs) and paired 
metastases from different sites (GSE147322, 70 cases [8], 
GSE193103, 67 cases [9], Aftimos et  al., 108 cases [10], 
Supplementary Table 5). This analysis confirmed that the 
stromal Met/PT spatial signature genes exhibit signifi-
cant differences between metastatic and primary disease 
transcriptomes, irrespective of the site of metastatic col-
onization and BC molecular subtype (Fig. 1H).

Moreover, a core of genes from the Met stromal signa-
ture was identified, which maintained a coherent varia-
tion between metastasis and PT samples in the three 
datasets (Fig. 1I, Supplementary Table 6). This transcrip-
tional core comprised potential axes of cell–cell commu-
nication, particularly those involving immune cells and 
the surrounding stroma. Key cytokines and chemokines, 
such as IL1RN, CCL13, and CCL16, suggest active sign-
aling pathways that mediate immune cell recruitment, 
activation, and polarization towards the engendering of 
an immunosuppressive microenvironment.

The stromal Met transcriptional signature was further 
tested in an independent experimental setting, analyz-
ing the whole spatial transcriptome profiling of primary 
tumors and lung metastases in mice. Two eight-week-old 
BALB/c mice were injected in the mammary fat pad with 
syngeneic 4T1 triple-negative BC cells and sacrificed 
after 28 days upon establishment of lung metastases for 
whole transcriptome analysis via spatial transcriptom-
ics (Fig.  2A). The PTs and lungs with Mets were pro-
filed by performing 10X Visium spatial transcriptomics 
on formalin-fixed and paraffin-embedded samples 
(Fig. 2B). Unsupervised spatial clustering of 9339 murine 
PT and Met microregions revealed a correspondence 
between Cluster 5 and metastatic foci (Fig.  2C-E), indi-
cating a unique expression profile of these microregions 

(Supplementary Table  7). When projecting the stromal 
Met signature orthologs onto the spatial transcriptomes, 
we observed over-expression of the metastatic signature 
in metastatic foci (Fig. 2F-G). Moreover, the stromal Met 
signature was able to specifically pinpoint the profiled 
microregions corresponding to metastatic foci (Fig. 2H). 
This further supports the validity of the identified meta-
static stromal transcriptional profile in recognizing meta-
static foci in a completely different context from the one 
in which the stromal Met spatial signature was originally 
generated.

A further relevant question was whether the expres-
sion of the stromal Met spatially-derived signature could 
intercept, among PTs, those with a propensity to an 
unfavorable clinical course. Applying the signature to 
two large clinically-annotated human BC datasets [11, 
12], the stromal Met genes could reliably identify cases 
with an unfavorable prognosis in terms of time to dis-
tant recurrence/metastatic disease (Fig. 2I). These results 
offer an intriguing perspective on the characteristics of 
the intratumoral stroma, highlighting the differential fea-
tures that mark primary and metastatic lesions, and the 
possibility that transcriptional profiles characterizing the 
stromal milieu of metastatic foci can be enriched in pri-
mary tumors with unfavorable behavior.

Conclusions
We discussed the distinct transcriptional profiles of 
stromal components within primary and metastatic BC 
lesions and the identification of a stromal Met signature 
that not only pinpoints metastatic disease but also cor-
relates with clinical outcome when applied to primary 
tumor transcriptomes, suggesting its encompassment 
of potential prognostic biomarkers. This commentary 
is based on a small sample size of stromal microregions 
analyzed, which may restrict the generalizability of the 
stromal Met signature across diverse tumor contexts. 
Additionally, the discussed results on one specific experi-
mental model profiled by spatial transcriptomics may not 
fully capture the complexity of the tumor microenviron-
ment in human BC metastatic disease, underscoring the 

Fig. 2 A Graphical abstract of the in vivo 4T1 triple-negative breast cancer cells injection experiment. B Representative microphotographs 
of H&E-stained FFPE sections from high and low lung metastatic burden involved in the Visium spatial transcriptome experiment profiling. Original 
magnification, × 50. Scale bar, 250 μm. C Unsupervised clustering of spatial microregions. D-E UMAP and Spatial projections highlighting foci 
microregions in metastasis samples. The foci microregions significantly overlap with cluster 5 (p-value <  10–16). F-G UMAP and Spatial projections 
of the stromal Met spatial signature total expression in metastasis samples. The Met spatial signature is over-expressed in the foci microregions. 
H Prediction of the foci microregions based on the stromal Met spatial signature expression. I Kaplan–Meier analysis representing the probability 
of survival in breast cancer patients from the BC compendium and the METABRIC dataset stratified as low Met—high PT (n = 1036 and n = 217 
in the BC compendium and METABRIC, respectively) and high Met—low PT (n = 957 and n = 218 in the BC compendium and METABRIC, 
respectively) spatial signature score. The log-rank test P-value reflects the significance of the association between levels of the Met/PT spatial 
signature score and shorter survival

(See figure on next page.)
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need for dedicated experimental studies to elucidate the 
molecular mechanisms underpinning stromal changes 
induced by malignant cells at metastatic sites. However, 
this commentary is intended to highlight the importance 
of considering stromal components in metastatic disease 
research and prompts the hypothesis that the unmet need 
for targeted therapies centered on metastases should lev-
erage their distinctive stromal molecular imprint.
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