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Abstract
Background  Despite the high response rate to PD-1 blockade therapy in metastatic melanoma (MM) patients, a 
significant proportion of patients do not respond. Identifying biomarkers to predict patient response is crucial, ideally 
through non-invasive methods such as liquid biopsy.

Methods  Soluble forms of PD1, PD-L1, LAG-3, CTLA-4, CD4, CD73, and CD74 were quantified using ELISA assay in 
plasma of a cohort of 110 MM patients, at baseline, to investigate possible correlations with clinical outcomes. A 
clinical risk prediction model was applied and validated in pilot studies.

Results  No biomarker showed statistically significant differences between responders and non-responders. 
However, high number of significant correlations were observed among certain biomarkers in non-responders. 
Through univariate and multivariate Cox analyses, we identified sPD-L1, sCTLA-4, sCD73, and sCD74 as independent 
biomarkers predicting progression-free survival and overall survival. According to ROC analysis we discovered that, 
except for sCD73, values of sPD-L1, sCTLA-4, and sCD74 lower than the cut-off predicted lower disease progression 
and reduced mortality. A comprehensive risk score for predicting progression-free survival was developed by 
incorporating the values ​​of the two identified independent factors, sCTLA-4 and sCD74, which significantly improved 
the accuracy of outcome prediction. Pilot validations highlighted the potential use of the risk score in treatment-naive 
individuals and long responders.

Conclusion  In summary, risk score based on circulating sCTLA-4 and sCD74 reflects the response to immune 
checkpoint inhibitor (ICI) therapy in MM patients. If confirmed, through further validation, these findings could assist 
in recommending therapy to patients likely to experience a long-lasting response.
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Background
Despite the high response rate to immunotherapy with 
immune checkpoint inhibitors in patients with metastatic 
melanoma, whether BRAF wild type (wt) or mutated, 
there is still a significant percentage of patients who do 
not respond to this therapy. This represents a dual chal-
lenge: on one hand, the side effects associated with 
immunotherapy can compromise the patients’ quality of 
life; on the other hand, the high cost of these therapies 
burdens the National Health System (NHS) without pro-
viding tangible benefits to all treated patients.

Developing reliable methods to predict patient 
response to immunotherapy is crucial. A major advance-
ment in this area can be achieved using biomarkers in 
human fluids, known as Liquid Biopsy. Recent technolog-
ical breakthroughs have made it possible to evaluate cir-
culating components, including tumor and immune cells, 
soluble factors, extracellular vesicles, tumor DNA and 
non-coding RNAs, all deriving from cancer cells them-
selves as well as from the tumor microenvironment and 
even in low abundance [1].

Our interest in this field began a few years ago and 
initially focused on the use of circulating extracellu-
lar vesicles (EVs) as factors useful for selecting patients 
with metastatic melanoma for immunotherapy treat-
ment. We demonstrated that certain subpopulations of 
EVs are independent factors predicting the response to 
anti-PD1 immune checkpoint inhibitors [2, 3]. The fur-
ther developing will focus on examining the role of EVs in 
other tumor pathologies sensitive to immunotherapy and 
on developing a Point-of-Care (PoC) tool for the detec-
tion of these vesicles, with the aim of making their dos-
age accessible in all hospitals. Nonetheless, we recognize 
the challenges associated with EV use as biomarkers of 
response, including the complexity of methods for their 
detection and isolation from peripheral blood.

Therefore, we have focused on the possibility of mea-
suring other circulating biomarkers as indicators of 
response/resistance to anti-PD1 and of developing new 
tool to improve prediction of clinical outcome. After 
quantifying the amount of specific molecules present 
in peripheral blood, both immune checkpoints directly 
or indirectly linked to anti-PD1 therapy such as sPD1 
(Soluble Programmed Cell Death Protein 1), sPD-L1 
(Soluble Programmed Death-Ligand 1), sLAG-3 (Soluble 
Lymphocyte-Activation Gene 3), and sCTLA4 (Soluble 
Cytotoxic T-Lymphocyte Antigen 4) and other immune 
biomarkers such as sCD4 (Soluble CD4), sCD73 (Soluble 
CD73), and sCD74 (Soluble CD74) we interpreted their 

predictive values on patient outcome by developing a risk 
model for tumor progression.

Using ELISA kits and biostatistical approaches for 
mono- and multiparametric analysis, we aim to provide 
a straightforward approach to predict clinical outcomes 
using biological biomarkers.

The choice of the biomarkers is justified by their 
established roles in tumor immunotherapy responses. 
Data from literature suggested that soluble form of 
immune checkpoints such as sPD1, sPD-L1, sLAG-3, 
and sCTLA-4 levels can potentially serve as predictive 
biomarkers for anti-PD1 immunotherapy because they 
reflect the immunosuppressive tumor microenviron-
ment and T cell dysfunction. sPD1 is the soluble form 
of the PD1 receptor, which binds to PD-L1 and PD-L2 
ligands. Elevated levels of sPD1 have been associated 
with poor prognosis and resistance to anti-PD1 therapy. 
It competes with membrane-bound PD1 for binding to 
PD-L1, thus potentially limiting the efficacy of anti-PD1 
therapy [4]. Like sPD1, sPD-L1 is the soluble form of the 
PD-L1 ligand. High levels of sPD-L1 have been corre-
lated with tumor progression and resistance to anti-PD1 
therapy. sPD-L1 can bind to PD1 and block the interac-
tion between membrane-bound PD-L1 and PD1, thereby 
interfering with the mechanism of action of anti-PD1 
therapy [5]. LAG-3 is a checkpoint receptor expressed 
on activated T cells and regulatory T cells. It negatively 
regulates T cell activation and proliferation. High levels 
of LAG-3 expression have been associated with T cell 
exhaustion and resistance to anti-PD1 therapy, suggest-
ing that LAG-3 expression levels may predict response 
to anti-PD1 therapy [6]. The soluble form of LAG-3 
(sLAG-3) has been suggested to be a co-inhibitor of 
immune responses by hindering monocyte differentia-
tion and their antigen-presenting capacity, which in turn 
inhibits the induction of T cell proliferation [7]. CTLA-4 
is another immune checkpoint receptor expressed on 
activated T cells. It competes with the co-stimulatory 
receptor CD28 for binding to CD80 and CD86 ligands 
on antigen-presenting cells, leading to T cell inhibi-
tion. Preclinical and clinical studies have demonstrated 
that tumors with high CTLA-4 expression may be more 
responsive to anti-PD1 therapy [8]. Some cancer cells 
have been found to naturally produce the soluble form 
of CTLA-4 (sCTLA-4), which is predicted to dampen T 
cell effector activity, by modulating T cell activation and 
altering the phenotype of intratumoral CD8+ T cells, and 
facilitate immune escape [9].

Due to their pivotal roles in modulating the immune 
response, promoting tumor progression, and facilitating 
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immune evasion across various cancer types, we also 
focused on soluble CD4 (sCD4), soluble CD73 (sCD73) 
and soluble CD74 (sCD74). sCD4 is a fragment of the 
CD4 molecule, which is primarily known for its role 
in the immune system as a co-receptor that aids in the 
recognition of antigens presented by MHC class II mol-
ecules. sCD4 can interfere with the normal function of 
membrane-bound CD4+ T cells. It may act as a decoy 
receptor, binding to MHC class II molecules and pre-
venting CD4+ T cells from effectively recognizing and 
responding to tumor antigens [10]. High levels of sCD4 
can indicate immune system dysregulation associated 
with cancer [11]. CD73, also known as ecto-5’-nucleo-
tidase, is an enzyme that converts extracellular AMP to 
adenosine, an immunosuppressive molecule [12]. sCD73 
plays a significant role in the tumor microenvironment, 
contributing to the production of adenosine, which can 
inhibit T cell activation and proliferation, promoting 
regulatory T cell (Treg) function, and suppressing anti-
tumor immune responses. Thus, sCD73 helps tumors 

evade immune detection and destruction. Moreover, 
it has been demonstrated that high levels of sCD73 are 
often associated with poor prognosis in various cancers 
because, by creating an immunosuppressive microen-
vironment, it facilitates tumor growth and metastasis 
[13]. Finally, CD74 is involved in antigen presentation by 
stabilizing MHC class II molecules and facilitating their 
transport to the cell surface [14]. sCD74 can interact with 
macrophage migration inhibitory factor (MIF), leading to 
activation of signaling pathways that promote cancer cell 
survival and proliferation. Elevated levels of sCD74 have 
been found in various cancers and are associated with 
tumor progression and poor prognosis, because sCD74 
can contribute to an environment that supports cancer 
cell growth and like its membrane-bound form, sCD74 
can influence immune responses. It may modulate the 
activity of immune cells within the tumor microenviron-
ment, contributing to immune evasion [15].

Methods
Aim
We aimed to investigate the relevance of several circulat-
ing biomarkers in predicting the clinical response of MM 
patients treated with anti-PD1 immunotherapy.

Study design
The study is divided into three primary analytical sec-
tions: (1) evaluating the soluble forms of PD1, PD-L1, 
LAG-3, CTLA-4, CD4, CD73, and CD74 as potential pre-
dictive biomarkers for the response to anti-PD1 therapy; 
(2) identifying independent biomarkers that can predict 
the response to anti-PD1 treatment; and (3) developing a 
risk score for progression-free survival (PFS) by integrat-
ing all independent factors derived from the multivariate 
analysis to provide a comprehensive assessment of the 
risk of tumor progression.

Patient enrolment
The study was previously approved by the Ethics Com-
mittee of the IRCCS Istituto Tumori Giovanni Paolo 
II (Prot. 590/CE) and written informed consent was 
obtained from all the enrolled patients. Blood samples 
were collected from 110 MM patients treated with check-
point inhibitors at IRCCS Istituto Tumori Giovanni Paolo 
II from January 2017 to December 2021 whose character-
istics are reported in Table 1. Pre-therapy (basal) samples 
were from all MM patients: 39 responders (RES) and 71 
non-responders (NRES); serial samples were obtained 
from 36 MM patients treated with anti-PD1 (18 NRES, 
12 long RES and 6 RES > PD who initially responded to 
ICI and then progressed). Clinical features of the enrolled 
patients were collected and reported in Table 1.

Table 1  Main characteristics of patients at immunotherapy 
(n = 110)
Characteristics n (%)
Age at metastasis, years, median [range] 58 [29–92]
Sex
Male 60 (55)
Female 50 (45)
Basal LDH*
  < ULN 59 (56)
  > ULN 46 (44)
N of metastatic sites**
  < 3 53 (49)
  ≥ 3 55 (51)
Site of melanoma 301
  Cutaneous 86 (78)
  Mucosal 3 (3)
  Ocular 3 (5)
  Unknown 14 (14)
Prior therapy for metastatic disease 47 (43)
ECOG PS***
  0 57 (53)
  1 42 (39)
  2 9 (8)
Stage at metastatic disease
  M1a 30 (27)
  M1b 19 (17)
  M1c 45 (41)
  M1d 16 (15)
Therapy
Anti-PD-1 106 (96)
Anti-PD-1 plus Anti-CTLA-4 4 (4)
* 5 patients had missing value

** 2 patients had missing value

*** 2 patients had missing value
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Blood samples
Peripheral blood was collected in EDTA tubes and 
plasma isolated as described in our previous study [3]. 
Plasma samples were stored at -80 °C in the institutional 
Biobank before the measurement of each marker.

Biomarkers elisa
The concentrations of sPD-1, sPD-L1, sCTLA-4, sLAG-3, 
sCD4, sCD73, and sCD74 were measured using enzyme-
linked immunosorbent assays (ELISA). Commercial 
ELISA kits (details specified in Human PDCD1 / CD279 / 
PD-1 ELISA Kit – LSBIO; ab277712 Human PD-L1 Sim-
pleStep ELISA® Kit, ab193707 – LAG3 Human ELISA Kit, 
ab213761 – Human CD73 ELISA Kit – ABCAM; Human 
sCD152/CTLA-4 ELISA Kit – INVITROGEN; RayBio 
Human CD4 ELISA Kit, RayBio Human CD4 ELISA 
Kit – RayBiotech) were utilized, adhering strictly to the 
manufacturer’s protocols. Absorbance measurements 
were taken using the Multiskan Sky – Thermo Scientific 
spectrophotometer, set to a wavelength of 450  nm. The 
concentrations of the target proteins were derived from 
standard curves constructed from known concentrations 
of each analyte. To ensure accuracy and reproducibility, 
all samples, along with standards and negative controls, 
were analysed in duplicate.

Statistical analysis
Statistical significance was calculated using two-tailed 
t-tests, Mann–Whitney U tests and two-tailed ANOVA 
using GraphPad Prism V.5.0 software (GraphPad Soft-
ware, San Diego, California, USA). Correlation analy-
sis was performed using the nonparametric Spearman 
correlation test. Data were scaled with the ‘prepro-
cess’ function of the R package “caret” (v.6.0) using the 
method “range” in the interval 1–10. In detail, through 
“range” method data were normalized in the range 0–1 
and the values were scaled in the interval 1–10, thus 
data are represented as Scaled Units. “A ROC analysis 
to identify optimal threshold able to stratify respond-
ers/not-responder patients was performed with “pROC” 
(v.1.18.5) R package. Univariate and multivariate Cox 
hazard regression and Kaplan-Meier analyses was car-
ried out with “survival” (v.3.7) R package. The significant 
features of the multivariate Cox hazard regression mod-
els and their coefficients were used to calculate risk score 
(RS), using the general formula:

	 RS = β 1 X biomarker1 + β 2X biomarker2 + β 3X biomarker3

The 5-fold cross validation of multivariate Cox model 
was performed with “survcomp” (v.1.54.0) and “rsample” 
(v.1.2.1) R packages. Optimal cutpoint for risk score were 
identified with the function “surv_cutpoint” of “max-
stat” (v.0.7) R package. Overall response rate analysis 

was performed through proportion test with “chisq.
test” function of “stats” (v.4.4.0) R package. Graphs were 
depicted through “ggplot2” R package.

Results
Patient cohort enrolled in the study
Seven soluble biomarkers were analyzed in the plasma 
of 110 MM patients, collected prior to the initiation of 
immunotherapy. The patients were divided into two 
groups: NRES, which included patients who were intrin-
sically resistant to immunotherapy and those whose 
disease stability was less than four months (PD: n. 71 
and SD < 4 months: n. 3); and RES, including patients 
who achieved a complete response (CR: n. 13), partial 
response (PR: n. 18), and those with disease stability for 
more than four months (SD > 4 months: n. 6). The patient 
characteristics are summarised in Table 1. The longitudi-
nal study included serial samples from 36 MM patients, 
with their characteristics detailed in the final paragraph 
of the Results section.

Development and validation of a risk assessment model 
for disease progression in metastatic melanoma patients
The core of this study is to develop a reliable tool for 
assessing the risk of disease progression in metastatic 
melanoma patients through a comprehensive statistical 
analysis.

For this purpose, we quantified each biomarker in the 
peripheral blood of RES and NRES patients using an 
ELISA assay and scaled the relative amounts as detailed 
in the Methods Section. As shown in the scatter plots, 
no significant differences were observed in biomarker 
quantities between the two patient populations, even 
when analyzing each response group (CR, PR, SD and 
PD) (Fig. 1A and S1). The results on PD1 and PD-L1 were 
already reported in our previous study [3]; here we inves-
tigated their involvement, together with all other bio-
markers, in the response to anti-PD1 utilising univariate, 
the COX multivariate and the risk score analyses.

Correlation analysis revealed a higher number of signif-
icant correlations among biomarkers in NRES compared 
to RES, notably between sLAG-3 vs. sPD-1 and sLAG-3 
vs. sCD4 (Fig. 1B and Table S1). In contrast, in RES sig-
nificant correlation was found only between sPD-L1 vs. 
sCTLA-4 (Fig. 1C and Table S1). Highly significant cor-
relations between sLAG-3 and sCD4 were observed in 
both RES and NRES groups, suggesting these factors do 
not play a role in determining immunotherapy response. 
These findings suggest that these biomarkers are more 
interconnected in patients in which immunotherapy is 
ineffective, potentially identifying individuals at higher 
risk of disease progression.

We then proceeded to evaluate if each marker at 
baseline could predict PFS and overall survival (OS) by 
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Kaplan-Meier analysis. ROC curve analysis was per-
formed to identify the optimal cut-off for each marker, 
demonstrating significant predictive relevance of marker 
levels for PFS and OS.

The results highlighted the significant predictive rele-
vance of sCTLA-4, sCD74, and sCD73 levels for PFS and 
sCTLA-4 and sCD73 for OS, as reported in Fig. 2, while 
sPD-L1, sPD1, sLAG-3 and sCD4 didn’t show it (data in 
Fig.  S2). Lower concentrations of sCTLA-4 and sCD74 

are associated with a better PFS and OS. While, consider-
ing sCD73, a better PFS is observed when sCD73 levels 
are higher. Next, univariate Cox regression analysis of all 
seven biomarkers revealed that sCTLA-4 and sCD74 are 
predictors for PFS, while sPD-L1, sCTLA-4, and sCD74 
are predictors for OS (Fig. 3A, B).

By multivariable Cox regression analysis, the biomark-
ers sCD74 and sCTLA-4 were found as independent 
positive predictors for PFS (Fig. 3C) and for OS (Fig. 3D). 

Fig. 1  Circulating biomarkers clustered by response to therapy in MM patients and correlation analysis. (A) Scatter plot with median of each biomarker 
expressed in scaled unit from responders (n = 36) and non-responders (n = 74). (B) Correlogram of Spearman’s correlation coefficients between all bio-
markers (*p < 0.05, **p < 0.01, *** p < 0.001)

 



Page 6 of 14Azzariti et al. Journal of Experimental & Clinical Cancer Research           (2025) 44:40 

In addition, sPD-L1 was another independent predictive 
factor for OS (Fig. 3D). Finally, through Cox Proportional 
Hazard model which combines the two independent fac-
tors sCD74 and sCTLA-4 for PFS into a single estimate, 
we found the formula for the risk score (RS) assessment 
of disease progression, as follows:

	 RS = 0.29 x CD74 + 0, 13 x CTLA − 4

Such a model was tested with 5-fold cross validation, 
achieving a mean Concordance Index of 0.66, indicating 
a moderate predictive power, successfully ranking the 
predictions with a 66% accuracy (Fig. 4A).

Thus, we searched for an optimal cutpoint of the Risk 
Score to stratify survival curves with a method able 

to identify the cut-off point that maximizes the log-
rank statistic. Such a cutpoint for the risk score was 0.4 
as shown in Fig.  4B. According to risk score cutpoint, 
Kaplan-Meier curves discriminating high vs. low risk 
groups reached statistical significance (p value = 0.00038) 
and median PFS of 3 months (95% CI: 2–3) for high-risk 
group and of 10 months (95%CI: 4–37) for low-risk group 
(Fig. 4C).

Finally, overall response rate analysis was performed 
comparing the low vs. high risk group. As shown in 
Fig. 4D, there is a significant statistical difference between 
clinical responses, with 76.1% patients with progression 
disease in high-risk group vs. 48.7% in the low risk one 
and 8.5% CRs in high risk group vs. 17.9 CRs in low risk 
subset.

Fig. 2  Circulating biomarkers clustered by evaluation of PFS and OS. (A) Statistically significant Kaplan–Meier survival curves according to each circulat-
ing biomarker clustered by ROC cut-off as respect to PFS, and (B) as respect to OS
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Pilot validation of the risk model for tumor progression
In treatment-naïve MM vs. pre-treated patients
To assess whether this RS cutpoint is effective for strati-
fying treatment-naïve patients with metastatic disease 
(26 patients with RS < 0.4 and 37 with RS > 0.4) vs. pre-
treated patients with metastatic disease (13 patients with 
RS < 0.4 and 34 with RS > 0.4), we analyzed the correla-
tion between RS values and PFS. The results, shown in 
Fig. 5A, demonstrated that the model performs optimally 
in the treatment-naïve population, with a statistically sig-
nificant difference between the two groups (RS ≥ 0.4 vs. 
RS < 0.4) of p = 0.0098 (**). Conversely, in patients who 
had undergone prior therapy, the KM curves for PFS 
between the RS ≥ 0.4 and RS < 0.4 groups showed a statis-
tical trend (p = 0.068) (Fig. 5B).

In NRES vs. long RES vs. RES > PD
Additionally, to investigate whether the risk score model 
developed in this study discriminate, in addition to NRES 
from RES, also MM patients who progressed after a posi-
tive response to ICI. We utilized data from 36 already 
enrolled patients, divided into three groups: 18 NRES 
(patients who showed no response to anti-PD1 at the first 
response evaluation), 12 long RES (patients with a sus-
tained response lasting between 4 and 18 months), and 
6 RES > PD (patients who initially responded positively 
to the therapy but later experienced disease progression) 
because for each of them we had serial plasma samples in 
function of time.

We applied the risk score model for these three MM 
patient populations, utilising the baseline samples, and as 
expected, the NRES group had a median risk score higher 
than the long RES group, with the median values of 

Fig. 3  Univariate and multivariate Cox-hazard regression analysis for A/C. PFS and B/C. OS
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0.4031 vs. 0.3724 for PFS (Fig. 5C). The RES > PD group 
had a higher risk score than the RES group, 0.4411 vs. 
0.3724 for PFS, categorizing these patients similarly to 
the NRES group (Fig. 5C). Considering the Kaplan-Meier 
plot of these three groups of patients, as expected, they 
fall into three distinct curves that are statistically dif-
ferent from each other (Fig.  5D). Because the analysis 
revealed that the distribution within the NRES group 
might be bimodal, to determine whether these patients 
can indeed be categorized into two distinct groups, we 
plotted the risk score values of NRES and RES enrolled in 
the study on a scatter plot. The results, shown in Fig. 5E, 
indicate that the NRES population is homogeneous, with 
no clear discriminating differences in both groups as pre-
viously suggested in Fig. 5C.

Furthermore, the analysis of each biomarker concentra-
tion at baseline among the 3 groups of patients showed 
that were not significant differences (Fig. S3). Conversely, 
considering the modulation of each biomarker in func-
tion of time, only for sPD1 a strong increase was found 
following immunotherapy, however with no differences 
in function of time among each of the three populations 
(Fig. 6).

Discussion
Identifying minimally invasive biomarkers to help oncol-
ogists select optimal MM patients for specific cancer 
therapies remains a critical objective. This is particularly 
true if the therapy is immunotherapy, both due to the 
possible side effects that can worsen the patients’ quality 

Fig. 4  Risk score performance and survival analysis. (A) Density plot of the Concordance Index related to 5-fold cross validation; (B) Maximally selected 
rank statistics result to identify optimal cutpoint of the RS; (C) Kaplan-Meier curves comparing high/low risk patients. (D) Overall response rate analysis 
stratifying patients in high/low risk group according to previously estimated RS cutpoint
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of life and the high cost to the NHS. Currently, among 
the identified biomarkers, PD-L1 tumor score and tumor 
mutational burden (TMB) are the most established for 
clinical use, although they have some limitations. In the 
past we have already carried out a study to character-
ize the various populations of extracellular vesicles that 
can be used as predictors of response to anti-PD1 in 
metastatic melanoma [2, 3]. In this study, we focused on 
exploring the potential predictive role of certain soluble 

plasma factors, which could be directly measured with-
out requiring preparatory steps for the plasma samples.

The four circulating immune checkpoints, sPD1, 
sPD-L1, sCTLA-4 and sLAG-3 and the three circulat-
ing immune-related proteins, sCD4, sCD73 and sCD74 
were measured with Elisa method and analysed with 
bioinformatics approaches highlighting that (i) none 
of the biomarkers was statistically different between 
RES and NRES, even considering each response group 
(CR, PR, SD and PD); (ii) a higher number of significant 

Fig. 5  Pilot validation of the risk model for tumor progression in treatment-naïve MM vs. pre-treated patients and - In NRES vs. long RES vs. RES > PD. 
Statistically significant Kaplan–Meier survival curves according to RS cutpoint as respect to PFS in (A) treatment-naïve and (B) pre-treated patients with 
metastatic disease. (C) Scatter plot with median of the RS from 18 NRES, 12 long RES and 6 RES > PD. (D) Kaplan-Meier curves were plotted for PFS, com-
paring risk score values of NRES (green line), long RES (red line), and RES > PD patients (blue line). (E) Scatter plot with median of the RS from NRES and RES
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correlations between biomarkers were observed in NRES 
compared to RES and (iii) by multivariate Cox regres-
sion, two independent factors sCD74 and sCTLA-4 were 
found as predictive for PFS and sCD74, sCTLA-4 and 
sPD-L1 for OS. This statistical approach allowed us to 
develop a risk model for disease progression. Following 
a rigorous cross-validation phase, the model was success-
fully applied to two carefully selected populations of MM 
patients.

The first analysis effectively distinguished the risk of 
progression in treatment-naive individuals, while, in 
patients who had undergone prior therapy, the model’s 
performance was less robust, even if a statistical trend 
was reached, likely due to the small sample size and the 

variability in pre-immunotherapy treatments, such as 
chemotherapy or targeted therapies (anti-BRAF/anti-
MEK), sometimes in combination with anti-CTLA-4.

The latter is a small MM patient cohort whose clinical 
history was available and which included NRES, long RES 
(patients with a long positive response to therapy) and 
RES > PD (patients in whom, after an initial response the 
melanoma had progressed). Even if the population used 
was small and it will certainly be necessary to confirm 
the results in a larger cohort, the trend obtained demon-
strated that higher values of the risk score were correlated 
with a lower PFS and that patients who progressed after 
an early response positive to the therapy, felt within the 
same range of risk score values of the NRES. Therefore, 

Fig. 6  Circulating biomarkers clustered by response to therapy of MM patients. Violin plots with median of biomarker, expressed in scaled unit, at base-
line, first and second revaluation from NRES (n = 18) long RES (n = 12) and RES>PD (n = 6) (Mann Whitney t test **p < 0.01, *** p < 0.001)
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if the data and the hypothesis will be validated in a larger 
cohort of MM patients, the physicians could have a tool 
that would lead to identifying patients who would show 
a long-lasting response over time, because the risk model 
has the potential to categorize patients RES > PD as non-
responsive to immunotherapy. The analysis of how each 
biomarker level changes in function of time demon-
strated that, following anti-PD1 administration, no sta-
tistically significant changes were observed compared 
to pre-treatment samples, except for sPD1. The sPD1 
concentration increased significantly post-immunother-
apy; however, no differences were found among patient 
groups (NRES, long RES, or RES > PD). This indicates 
that sPD1 levels cannot be used for therapy monitoring. 
This result further supports our previous evidence show-
ing that the tumour-derived extracellular vesicles positive 
for PD1 are monitoring biomarker of anti-PD1 response 
[3].

In literature, the topic of the study has been little inves-
tigated in melanoma. Other authors have demonstrated 
that sPD-L1 levels are significantly higher in melanoma 
patients compared to healthy individuals, especially in 
those with progressive disease [16] unlike our results, 
which showed no statistically significant differences 
between responders (RES) and non-responders (NRES). 
Zhou demonstrated that sPD-L1 levels did not appear 
to correlate with clinical response in the initial months; 
however, differences became evident after at least five 
months, particularly in patients with partial responses 
to anti-PD1 therapy [16]. These findings align with our 
data, which showed no significant variations in sPD-L1 
levels within the first five months in NRES (median: 4 
months) and during the first reassessment of long-term 
responders (RES). An increasing trend, though not statis-
tically significant, was observed in sPD-L1 levels during 
the second reassessment after five months in long-term 
responders (RES) and in those who shifted from response 
to progression (RES > PD) (median reassessment times: 
4–18 and 12–30 months, respectively).

The elevated levels of sPD-L1 and sPD1 in metastatic 
melanoma as respect to healthy have also been confirmed 
by Ugurel [17], who demonstrated that both immune 
checkpoints were present in the serum at higher con-
centrations before immunotherapy in non-responders. 
Ugurel reported that combined baseline serum sPD1 and 
sPD-L1 were considered predictors of anti-PD1 response 
[17], while in our analysis, sPD1 levels were not differ-
entially expressed between NRES and RES. However, we 
employed a different approach, developing a risk score 
model and using independent factors from multivariate 
analysis to identify the score value for PFS, which allowed 
categorizing patients into RES and NRES groups.

Our choice of these biomarkers is further supported by 
the fact that these immune checkpoints have also been 
studied in cancers other than melanoma.

sPD1 and sPD-L1 have also been characterized as 
prognostic and/or predictive factors for immunotherapy 
response in non-small-cell lung cancer (NSCLC), pan-
creatic ductal adenocarcinoma (PDAC), and renal cell 
carcinoma (RCC) [18–20]. In PDAC, the prognostic role 
of sPD1 and sPD-L1 has been demonstrated, consistent 
with findings in other diseases [18]. In NSCLC, a similar 
trend to metastatic melanoma was observed, with higher 
levels in non-responders compared to responders, and 
no statistically significant modulation during therapy 
[21]. Later, Hayashi demonstrated that both circulating 
immune checkpoints, along with sCTLA-4, increased in 
non-responders compared to responders, especially in 
patients with tPD-L1 > 50% [19]. Additionally, the ability 
of sPD1, sPD-L1, and sLAG-3 to predict PFS and OS was 
studied in RCC, with only sLAG-3 emerging as a predic-
tive factor [20], differing significantly from our results 
and thus suggesting a tumor-specific predictive role.

The literature data on other circulating immune check-
points as predictive factors is scarce. sCTLA-4 has been 
shown to predict response to Ipilimumab in melanoma, 
with higher circulating levels in responders compared 
to those with progressive disease [22]. These findings, 
despite a different immunotherapeutic approach, are 
consistent with our results in melanoma responding to 
anti-PD1 therapy. Supporting the prognostic and pre-
dictive role of this circulating immune checkpoint are 
data from Liu and Teng [23, 24]. sCTLA-4 was evaluated 
as a prognostic factor in lung and esophageal cancers, 
demonstrating that increased post-therapy levels (che-
motherapy or radiochemotherapy) correlated with lon-
ger OS and PFS, suggesting that this soluble factor may 
block the classic immunosuppressive activity of CTLA-4 
[23]. Conversely, an opposite trend was observed in HCC 
patients receiving radiofrequency ablation [24]. Regard-
ing sLAG-3 as a coinhibitory immune modulator in 
patients before and during immune checkpoint blockade, 
Gorgulho demonstrated that sLAG-3 was more highly 
expressed in patients than in healthy individuals, with 
elevated levels correlating with worse OS and PFS [25]. 
These findings contrast with the lack of significance in 
our study, potentially explained by a fundamental differ-
ence: our cohort included 110 melanoma patients, while 
Gorgulho’s study had only 11 melanoma patients out of a 
total of 84.

Data on sCD4, sCD73, and sCD74 as predictors of 
immunotherapy response are also absent or limited. 
According to Morello, sCD73 activity is higher in mela-
noma patients than in healthy individuals and greater in 
non-responders than responders, suggesting a poten-
tial role for sCD73 as a predictor of nivolumab response 
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[26]. This finding was later validated in a larger patient 
cohort [27]. Our data contrast with these reports, possi-
bly due to differing methodologies: their studies assessed 
sCD73 activity, while we measured sCD73 expression 
levels in plasma. Turiello et al. prioritized activity data 
over expression levels to achieve more accurate patient 
stratification [27]. This discrepancy raises an open ques-
tion about whether sCD73 activity is directly correlated 
with its plasma levels in responders and non-responders, 
which we plan to explore in the future. For sCD74, it has 
been shown that sCD74 levels have a prognostic role in 
melanoma, correlating with tumor tissue CD74 expres-
sion. Patients with high sCD74 and low Macrophage 
Migration Inhibitory Factor (MIF) levels had better OS 
compared to those with low sCD74 and high MIF [15]. 
Our data further characterize sCD74 role in predicting 
response to anti-PD1 therapy in melanoma.

Notably, we found a higher number of significant 
direct correlations between the immune checkpoints 
and/or immune-related proteins in NRES compared to 
RES, that can be explained by the simultaneous expres-
sion/release of such molecules, which is consistent with 
the co-existence of multiple mechanisms of resistance to 
anti-PD1 therapy in NRES. NRES are often expected to 
exhibit a more complex network of immune checkpoint 
interactions, suggesting a tumor microenvironment that 
has adapted to evade immune surveillance by activat-
ing compensatory pathways to suppress the immune 
response. This may be rooted in an inherently dysregu-
lated immune system, where checkpoints like sLAG-3, 
sPD-1, and sCTLA-4 play interdependent roles in sus-
taining an immunosuppressive environment [4, 19, 28]. 
Additionally, anti-PD1 resistance in these patients might 
involve alternative immune pathways becoming domi-
nant, creating a coordinated resistance strategy [29, 30]. 
Finally, chronic inflammation or the presence of immu-
nosuppressive regulatory cells like Tregs and MDSCs, 
which are often more pronounced in non-responders, 
may drive the simultaneous upregulation of multiple 
checkpoints, resulting in the observed stronger correla-
tions [31–33]. The correlation between sPD1 and sLAG-3 
in NRES and between sPD-L1 and sCTLA-4 in RES sug-
gest an immunosuppressive environment in NRES com-
pared to an immune-responsive one in RES. The inverse 
correlation between sPD-L1 and sCTLA-4 observed in 
RES is not representative of a hot tumor as suggested 
by Santos-Briz [34] because a “hot” tumor has a direct 
correlation between the two biomarkers reflecting their 
tumor expression. Thus, further investigations are war-
ranted to determine the role of these soluble biomarkers 
in the TME. In NRES, sPD1 and sLAG-3 showed a direct 
correlation and it is known that PD1 and LAG-3 are often 
co-expressed on both exhausted T cells and tumor cells 
within the tumor microenvironment [19, 35]. Exhausted 

T cells are characterized by functional impairment and 
upregulation of multiple inhibitory receptors, including 
PD1 and LAG-3. The co-expression of these checkpoints 
indicates a state of deep T cell dysfunction and is asso-
ciated with poor anti-tumor immunity [35]. Therefore, 
the observed direct relationship between the two circu-
lating biomarkers, released by T lymphocytes and tumor 
cells, suggest that NRES are characterized by an immu-
nosuppressive tumor microenvironment and a resis-
tance mechanism. Additionally, the expression of other 
inhibitory receptors like LAG-3 could facilitate immune 
evasion [19]. Given the biological role of sPD-1 and sPD-
L1 in restraining the activity and survival of T cells and 
Antigen-presenting Cells (APCs) [36], we can speculate 
that a direct correlation between such biomarkers is an 
additional evidence of the systemic immune tolerance 
in NRES. Further two significant correlations found in 
NRES are those between sCD73 and sCD74 and between 
sCD74 and sPD1. However, to the best of our knowl-
edge, aside from evidence showing that both sCD73 and 
sCD74 are involved in cancer immune pathway, no data 
are currently available on a possible correlation between 
them in the context of the response to anti-PD1 therapy, 
which represents one the results of the present study.

Conclusions
An unmet clinical need exists for easily accessible blood 
biomarkers that can be determined through simple ana-
lytical methods for predicting the efficacy of ICI therapy 
before treatment. In this study, we evaluated whether 
certain soluble factors could serve as potential predictive 
biomarkers for determining the effectiveness of immu-
notherapy in patients with MM. A combined biomarker 
score, reflecting the immune status of MM, proved to be 
more successful in predicting the response to anti-PD1 
therapy than individual biomarker values, which tend to 
exhibit high variability.
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