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Abstract
Background The increasing incidence of early-stage T1 gastric cancer (GC) underscores the need for accurate 
preoperative risk stratification of lymph node metastasis (LNM). Current pathological assessments often misclassify 
patients, leading to unnecessary radical surgeries.

Methods Through analysis of transcriptomic data from public databases and T1 GC tissues, we identified a 4-mRNA 
panel (SDS, TESMIN, NEB, and GRB14). We developed and validated a Risk Stratification Assessment (RSA) model 
combining this panel with clinical features using surgical specimens (training cohort: n = 218; validation cohort: 
n = 186), gastroscopic biopsies (n = 122), and liquid biopsies (training cohort: n = 147; validation cohort: n = 168).

Results The RSA model demonstrated excellent predictive accuracy for LNM in surgical specimens (training 
AUC = 0.890, validation AUC = 0.878), gastroscopic biopsies (AUC = 0.928), and liquid biopsies (training AUC = 0.873, 
validation AUC = 0.852). This model significantly reduced overtreatment rates from 83.9 to 44.1% in tissue specimens 
and from 84.4 to 56.0% in liquid biopsies. The 4-mRNA panel showed specificity for T1 GC compared to other 
gastrointestinal cancers (P < 0.001).

Conclusions We developed and validated a novel liquid biopsy-based RSA model that accurately predicts LNM in T1 
GC patients. This non-invasive approach could significantly reduce unnecessary surgical interventions and optimize 
treatment strategies for high-risk T1 GC patients.
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Introduction
The implementation of widespread screening programs 
and regular evaluations for early gastric cancer (GC) has 
significantly increased the detection rates of T1 GC by 
15–30% in recent years [1–3]. Simultaneously, advance-
ments in endoscopic technologies, including endoscopic 
submucosal dissection (ESD) and endoscopic muco-
sal resection (EMR), have enabled curative treatments 
for patients with T1 GC, who previously required radi-
cal surgical interventions [4–6]. These innovations have 
led to guideline recommendations, including those from 
the National Comprehensive Cancer Network, establish-
ing ESD as the preferred treatment modality for T1 GC 
[7–8]. Emerging evidence highlights the potential of ESD 
as a standalone treatment for T1 GC patients at low risk 
of lymph node metastasis (LNM). However, radical sur-
gical resection remains the standard for those deemed 
high-risk [9]. Current risk stratification for LNM pre-
dominantly relies on the eCura score, derived from post-
endoscopic pathological analysis [10–12]. This approach 
often misclassifies approximately 70–80% of T1 GC 
patients as high-risk, despite post-surgical pathological 
assessments revealing LNM in only 8–16% of cases [13–
16]. Consequently, overtreatment with radical surgeries 
is common, exposing patients to unnecessary costs, com-
plications, and elevated mortality risks associated with 
extensive surgical procedures.

Accurate preoperative identification of LNM risk is 
critical for guiding treatment decisions in T1 GC. While 
ESD is adequate for managing low-risk patients, the reli-
ance on the eCura score frequently results in unnecessary 
surgical interventions for patients without LNM. This 
highlights an urgent clinical need for more precise strati-
fication methods to minimize overtreatment, potentially 
sparing up to 85–95% of patients from radical surgeries 
[13–16].

Recent studies suggest that mRNA expression pat-
terns can serve as reliable biomarkers, reflecting both 
physiological and pathological states in GC [17–20]. 
Differential mRNA expression has been closely asso-
ciated with gastric carcinogenesis, underscoring its 
potential for molecular subtyping and risk assessment 
[21–24]. Recent studies have emphasized the role of gene 
expression in classifying patients with GC into various 
molecular subtypes [25–28]. While prior investigations 
have demonstrated the utility of gene expression pro-
files in identifying lymphatic involvement in other can-
cers, such as colorectal and esophageal cancers [29–35], 
their application in T1 GC remains underexplored. The 
advent of liquid biopsy technology offers a promising 
avenue for non-invasive biomarker-based diagnostics. 
Unlike traditional tissue-based approaches, liquid biop-
sies enable straightforward, cost-effective, and preopera-
tive risk assessments. This method could transform the 

clinical management of T1 GC by allowing precise iden-
tification of high-risk LNM without the need for invasive 
procedures.

In this study, we address the critical need for improved 
LNM risk assessment in T1 GC through the development 
and validation of a novel liquid biopsy-based transcrip-
tomic panel. By leveraging a comprehensive approach to 
biomarker discovery, we aim to establish a non-invasive 
diagnostic tool that accurately identifies high-risk LNM 
patients. This innovative strategy has the potential to 
minimize unnecessary radical surgeries, optimize treat-
ment outcomes, and improve the overall quality of care 
for T1 GC patients.

Methods and materials
Biomarker discovery in genome-wide expression profiling 
datasets
The workflow of this study, depicted in Fig.  1, involves 
a systematic biomarker discovery process, followed by 
validation phases using various sample types, includ-
ing fresh frozen post-surgical specimens, gastroscopic 
biopsy specimens, and peripheral blood samples. During 
the biomarker discovery phase, we selectively used the 
GSE246963 dataset from the Gene Expression Omni-
bus (GEO) database ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g e o 
/), adhering to strict screening criteria (Supplementary 
Fig.  1). Additionally, we analyzed gene expression pro-
files from patients with GC in The Cancer Genome Atlas 
(TCGA) database. We also incorporated mRNA sequenc-
ing data from three T1-stage gastric cancer tissues with 
LNM and six without, sourced from the Fourth Hospital 
of Hebei Medical University (FHHMU).

During the validation phase, we used real-time quan-
titative polymerase chain reaction (RT-qPCR) to evalu-
ate the expression of these candidate mRNAs in a pilot 
cohort comprising 28 matched pairs of T1 GC samples 
with and without LNM, matched based on a 1:1 pro-
pensity score. Additionally, we matched 22 pairs of 
peripheral blood samples from the same period to assess 
candidate mRNA expression in blood. All samples in the 
pilot cohort were collected from FHHMU between Janu-
ary and March 2022 and 2024, with the detailed protocol 
illustrated in Supplementary Fig. 2. The clinicopathologi-
cal details of these patients are provided in Supplemen-
tary Table 1.

Clinical cohorts for biomarker validation
Initially, this study included 404 fresh-frozen speci-
mens from T1 GC patients for training and validation 
of biomarkers predictive of LNM. These specimens 
were sourced from six diagnostic centers across differ-
ent regions in China. The training cohort comprised 218 
patients recruited between January 2010 and January 
2024 from the FHHMU, Shijiazhuang People’s Hospital 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Fig. 1 Flowchart of the study design for the discovery and validation of a 4-mRNA panel to predict LNM in T1 GC patients
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(SJZPH), and Baoding Central Hospital (BDCH). The val-
idation cohort included 186 patients treated between July 
2010 and February 2024 at Hengshui People’s Hospital 
(HSCPH), Jinling Hospital of Nanjing University (JLNJ), 
and Renmin Hospital of Wuhan University (WHPH). No 
significant clinical differences were observed between the 
training and validation cohorts (Supplementary Table 2).

Furthermore, we performed an additional analysis 
using 122 matched gastroscopic biopsy specimens col-
lected from six diagnostic centers. This analysis comple-
ments the study of surgically resected specimens and 
validates the transition of biomarker detection from 
larger surgical specimens to smaller gastroscopic biop-
sies. Detailed clinical characteristics are provided in Sup-
plementary Table 3.

To adapt tissue-based biomarkers for liquid biopsy 
applications, we retrospectively analyzed a cohort of T1 
GC patients. The training cohort consisted of 147 T1 GC 
patients treated at FHHMU from 2017 to 2020. For the 
validation cohort, we included serum samples from 168 
GC patients collected between 2014 and 2020 across five 
other institutions (SJZPH, BDCH, LNPCH, JLNJ, and 
WHPH). Detailed clinical characteristics of both cohorts 
are summarized in Supplementary Table 4, showing no 
significant differences between groups. Additionally, we 
prospectively validated these findings in an indepen-
dent cohort of 97 T1 GC patients (registration num-
ber: ChiCTR-IIR-17011197) recruited at FHHMU from 
August 2017 to March 2019, with serum samples col-
lected pre- and three months post-radical surgery.

To evaluate the specificity of our candidate mRNAs as 
biomarkers for gastric cancer, we compared their per-
formance in predicting LNM with that in other endo-
scopically resectable gastrointestinal cancers, such as 
esophageal, colon, and rectal cancers. This analysis 
involved assessing the expression of each gene in the 
4-mRNA panel using RT-qPCR on serum samples from 
gastrointestinal cancer patients. Serum samples from 
patients with esophageal (n = 38), colon (n = 32), and rec-
tal cancer (n = 29) were collected at FHHMU between 
2019 and 2021.

Inclusion and exclusion criteria
All patients recruited for this study underwent biopsy-
confirmed radical surgery for T1-stage GC and were 
classified as “high-risk” according to the eCure scoring 
system. High-risk criteria included lesion diameter over 
3  cm, positive vertical margins, venous invasion, sub-
mucosal invasion depth greater than 500  μm, and posi-
tive lymphovascular invasion. Exclusion criteria included 
patients who had received any antitumor therapy prior to 
enrollment, those with distant metastasis, cases of resid-
ual gastric tumors following partial gastrectomy, non-
adenocarcinoma histology, or cases without available 

serum samples. For all cohorts, recurrence or disease 
progression was monitored regularly by laboratory tests, 
endoscopy, and abdominal and pelvic CT according to 
established gastric cancer treatment guidelines [36].

Tissue specimens were obtained from malignant 
lesions in surgically resected gastric samples, rapidly fro-
zen in liquid nitrogen, and stored at -80℃. The process-
ing and examination of surgical specimens followed the 
guidelines of the Chinese Society of Clinical Oncology. 
Tumor invasion depth (T stage) and lymph node metas-
tasis (N stage) were classified according to the 8th edition 
of the American Joint Committee on Cancer (AJCC). All 
procedures adhered to the principles of the Declaration 
of Helsinki. Written informed consent was obtained from 
all study participants, and the study received institutional 
review board approval from all participating institutions.

RNA extraction and gene expression analysis
Total RNA was isolated from freshly frozen surgical tis-
sues using TRIzol reagent, following the manufacturer’s 
protocol, and from serum samples using the PAXgene 
Blood RNA Kit (Qiagen). Detailed RNA isolation, puri-
fication, and reverse transcription protocols have been 
described in our previous studies [37–38]. For gene 
expression analysis, RT-qPCR was conducted on an 
Applied Biosystems Real-Time PCR system using the 
2^−ΔΔCT method, with GAPDH as the internal control. 
Assay reproducibility was ensured by implementing con-
trol templates, excluding low-quality RNA samples, and 
performing replicates. PCR primer sequences are pro-
vided in Supplementary Table 5.

Protein-protein Interaction network and pathway analysis
The Protein-Protein Interaction (PPI) network for tar-
get genes was constructed using the STRING data-
base (https://string-db.org) and visualized in Cytoscape 
(https://cytoscape.org), where hub genes were identified 
through degree analysis. Additionally, the candidate gene 
list was analyzed for gene set and pathway enrichment 
using the Enrichr database ( h t t p  s : /  / m a a  y a  n l a  b . c  l o u d  / E  n 
r i c h r /) [39].

Statistical analysis
Statistical analyses were performed using IBM SPSS ver-
sion 23, R version 3.6.3 and GraphPad Prism version 
8.0. The association between mRNA expression and 
various clinicopathological factors was evaluated using 
the X2 test. Paired one-sided t-tests were used to com-
pare gene expression levels in serum samples pre- and 
post-surgery. Both univariate and multivariate logistic 
regression analyses, incorporating clinicopathological 
variables and mRNA classifiers as covariates, were per-
formed; only variables significant in the univariate mod-
els were included in the multivariate regression. During 

https://string-db.org
https://cytoscape.org
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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the discovery phase, gene expression differences between 
the LNM and non-LNM groups were analyzed using 
Wilcoxon rank sum and Bonferroni tests. In the clinical 
validation phase, gene-based risk scoring was modeled 
through logistic regression using backward elimination. 
The performance of these models was assessed using the 
receiver operating characteristic (ROC) curves and AUC 
values. AUC values were calculated from ROC curves 
using the pROC package in R, with ROC curve compari-
sons performed using the DeLong test. The Youden index 
in the pROC package was used to determine the optimal 
cut-off value for the ROC curves. Sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), precision, and accuracy for the 4-mRNA 
panel-based biomarker groups were calculated across all 
cohorts using the Report ROC package. The results are 
displayed as confusion matrix plots. Statistical signifi-
cance was set at P < 0.05.

Results
Discovery of candidate genes predicting LNM in T1 GC 
patients
In this study, we performed an unbiased biomarker dis-
covery process by analyzing transcriptomic data from 
two GC datasets (TCGA and GSE246963), comple-
mented with mRNA sequencing data from T1 GC tissues 
with and without LNM. Using differential gene expres-
sion analysis (Wilcoxon rank-sum test for GSE246963, 
P < 0.05; EdgeR for TCGA, P < 0.05) and correlation 
analysis (r < 0.5), we identified four genes SDS, TES-
MIN, NEB, and GRB14 that were differentially expressed 
between LNM and non-LNM patients (Fig. 2A). Volcano 
plots showed these genes were upregulated in cancer 
tissues (Fig.  2B). Validation with TCGA data confirmed 
higher expression in LNM cases (P < 0.05) (Supplemen-
tary Fig.  3), and pan-cancer analysis showed elevated 
expression across various cancer types (Supplementary 
Fig.  4). Further validation in a pilot cohort at FHHMU 
showed significantly higher expression of these genes 
in T1 GC tissues with LNM compared to those with-
out LNM (P < 0.05) (Fig.  2C-D). Additionally, higher 
expression levels of these genes were closely associated 
with poorer clinical characteristics (Fig.  2E-F), and the 
detailed P values are shown in Supplementary Tables 6–
7. Correlation analysis using Timer 2.0  (   h t t p : / / t i m e r . c i s t r 
o m e . o r g /     ) indicated positive associations between these 
genes and VEGFA and VEGFC in metastasis and tube 
formation (Fig.  2G). Pathway enrichment analysis using 
Enrichr (KEGG and GO,  h t t p  s : /  / m a a  y a  n l a  b . c  l o u d  / E  n r i c 
h r /) and PPI network mapping with STRING and  C y t o 
s c a p e 3.9.1 revealed the potential roles of these genes in 
GC (Fig. 2H-L). Overall survival analysis of the four can-
didate mRNAs using Kaplan-Meier plots  (   h t t p s : / / k m p l o 
t . c o m / a n a l y s i s /     ) revealed that high expression status of 

all four candidate genes was significantly associated with 
poorer prognosis (Supplementary Fig. 5).

Validation of surgical resection specimens for 4-mRNA 
panel predicting LNM in T1 GC patients
First, we conducted a correlation analysis of the four 
candidate mRNA biomarkers and found no significant 
correlations among them, eliminating the possibility of 
collinearity (Fig. 3A). Next, we evaluated these biomark-
ers in a training cohort of T1 GC patients (184 without 
LNM, 34 with LNM) using RT-qPCR and logistic regres-
sion. Each gene was independently associated with LNM 
risk in T1 GC patients (P < 0.05, Supplementary Table 8). 
ROC curve analysis showed that while individual mRNA 
biomarkers were effective, the combined 4-mRNA 
panel significantly enhanced diagnostic performance 
(AUC = 0.838, sensitivity 82.3%, specificity 75.0%) (Sup-
plementary Fig. 6A-B).

To further improve clinical utility, we developed a Risk 
Stratification Assessment (RSA) model by combining 
the 4-mRNA panel (OR = 13.911, 95% CI: 4.585–42.212) 
with clinical variables, including tumor size (OR = 5.906, 
95% CI: 1.673–20.856), depth of infiltration (OR = 5.940, 
95% CI: 1.814–19.452), and lymphovascular invasion 
(OR = 5.935, 95% CI: 1.767–19.935) (Supplementary 
Table 9). This RSA model was visualized using a nomo-
gram (Fig.  3B). In the training cohort, the RSA model 
demonstrated excellent predictive accuracy for LNM, 
achieving an AUC of 0.890, significantly outperform-
ing the clinical model (AUC = 0.820; P = 0.036) (Fig. 3C). 
Calibration curves further validated the RSA model’s reli-
ability in predicting LNM (Fig. 3E). The confusion matrix 
and radar chart confirmed that the RSA model provided 
higher sensitivity and specificity than the clinical model 
alone (Fig. 3G upper panel; Fig. 3I; Supplementary Table 
10).

For validation, the RSA model was applied to an inde-
pendent cohort of 186 T1 GC patients (31 LNM-positive, 
155 LNM-negative). It retained high predictive accuracy 
(AUC = 0.878, sensitivity 83.9%, specificity 83.9%), out-
performing both the clinical model and the 4-mRNA 
panel in LNM detection (Fig.  3D). Calibration curves 
again verified the model’s reliability in predicting LNM 
risk (Fig. 3F). The confusion matrix and radar chart con-
firmed that the RSA model achieved the highest sensi-
tivity and specificity in the validation set as well (Fig. 3G 
lower panel; Fig. 3J; Supplementary Table 10). Addition-
ally, we selected 26 T2, 19 T3, and 40 T4 GC patients 
for validation of the RSA model’s ability to predict 
LNM. The results revealed that the expression of four 
mRNAs associated with LNM was higher in specimens 
from T2-T4 stage GC patients with LNM compared to 
those without (Supplementary Figs.  7–8). Further ROC 
curve analysis showed the following AUC values: T2 

http://timer.cistrome.org/
http://timer.cistrome.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://kmplot.com/analysis/
https://kmplot.com/analysis/
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Fig. 2 (See legend on next page.)
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patients AUC = 0.646 (95% CI: 0.400–0.892), T3 patients 
AUC = 0.608 (95% CI: 0.343–0.873), and T4 patients 
AUC = 0.640 (95% CI: 0.416–0.864). These findings sug-
gest that the 4-mRNA model may have limited applica-
bility for predicting LNM in T2-T4 stage GC patients 
(Supplementary Fig. 9).

Clinically, the RSA model significantly reduced over-
treatment rates. As shown in Fig.  3H, using traditional 
clinicopathological criteria, 100% of patients in the train-
ing cohort would have been classified as high-risk, result-
ing in unnecessary radical surgeries for 84.4% of cases 
(184 of 218). In contrast, the 4-mRNA classifier reduced 
the high-risk classification rate to 33.9%, with an over-
treatment rate of only 21.1%. The RSA model further 
refined this classification, effectively eliminating over-
treatment (9.2% in the training cohort). Similar reduc-
tions were observed in the validation cohort, where the 
RSA model significantly reduced unnecessary surgeries 
compared to other models. Clinical impact curve analysis 
demonstrated that the RSA model’s nomogram offered 
superior net benefit across a broad, practical range of 
threshold probabilities, indicating substantial predic-
tive value in both training and validation sets (Fig.  3K-
L). Overall, the RSA model markedly improved clinical 
decision-making, reducing overtreatment rates from 83.9 
to 44.1% across both cohorts, thus enhancing treatment 
accuracy and minimizing unnecessary interventions 
(Fig.  3M). Moreover, compared to the eCura system, 
the high- and low-risk stratification based on the RSA 
model was able to distinguish T1 GC patients (Supple-
mentary Fig. 10). The RSA combination model improved 
the prediction accuracy for recurrence risk compared to 
the eCura system (AUC = 0.724, 95% CI = 0.640–0.809), 
with the RSA model achieving an AUC of 0.786 (95% 
CI = 0.703–0.868) (Supplementary Fig. 12A-C).

Validation of gastroscopic biopsy specimens for predicting 
the 4-mRNA panel of LNM in T1GC patients
In addition to the surgically resected specimens from 
our training cohort, we obtained 122 matched biopsy 
samples, including 18 cases positive for LNM and 104 
negative cases (Fig. 4C). Notably, a significant correlation 

among four genes was observed in the matched biopsy 
samples (Fig.  4A). Comparative analysis of gene expres-
sion between the matched biopsy and surgical speci-
mens revealed no significant differences in these genes 
(Fig.  4B). The AUC for detecting LNM using clinical 
characteristics was 0.829 (95% CI: 0.738–0.919). In con-
trast, the AUC for the RSA model was 0.928 (95% CI: 
0.880–0.977), suggesting that the RSA model is also suit-
able for preoperative biopsy samples (Fig.  4D; Supple-
mentary Fig. 6C). Additionally, calibration curve analysis 
further validated the RSA model’s excellent predictive 
performance (Fig. 4G).

In the biopsy cohort, the RSA model demonstrated the 
highest sensitivity (83.3%) and specificity (84.6%), outper-
forming the clinical model (sensitivity: 72.2%; specificity: 
79.8%) and the 4-mRNA panel model (sensitivity: 94.4%; 
specificity: 69.2%) (Fig.  4E–F, Supplementary Table 11). 
After analyzing the clinical benefits of different models, 
we found that the RSA model reduced the overtreatment 
rate from 85.2% to 13.9%, compared to the clinical fea-
ture-only model (Fig. 4H). This result highlights the RSA 
model’s potential to improve clinical decision-making 
and reduce unnecessary treatments. Furthermore, the 
clinical impact curve showed that the nomogram pro-
vided superior net benefit across a broad, clinically rel-
evant range of threshold probabilities, underscoring the 
RSA model’s predictive value (Fig. 4I).

Liquid biopsy specimen validation of a 4-mRNA panel 
predicting LNM in T1GC patients
The primary objective of our study was to develop a liq-
uid biopsy-based assay for predicting LNM in T1 GC 
patients by adapting a tissue-based 4-mRNA biomarker 
panel into a serum-based test. In a training cohort of 
125 LNM-positive and 22 LNM-negative patients, we 
used RT-qPCR to assess the diagnostic potential of 
these mRNAs. Initial quality control of peripheral blood 
samples confirmed normal A260/280 ratios (Fig.  5A). 
Logistic regression analysis indicated that each mRNA 
independently predicted LNM risk (all P < 0.05, Supple-
mentary Fig.  6D-E, Supplementary Table 8), and mul-
tifactor logistic regression was used to construct a 

(See figure on previous page.)
Fig. 2 Discovery and Preliminary Validation of LNM Candidate Biomarkers in T1 Gastric Cancer Patients Using Public Databases and Transcriptomic 
Sequencing Data. (A) Through Venn diagram analysis, four candidate mRNAs (SDS, TESMIN, NEB, GRB14) were identified by examining transcriptomic 
data from the TCGA database (tumor tissues vs. adjacent normal tissues), GEO database (GSE246963), and paired tumor samples from T1 GC patients 
with and without LNM. (B) A volcano plot displays the expression levels of these four candidate genes across the datasets used in the discovery process. 
(C) Expression levels of the four candidate mRNAs were compared in fresh-frozen tumor tissues from 28 matched T1 GC patient pairs with and without 
LNM, matched by propensity score. (D) In peripheral blood samples from 22 matched patient pairs, expression levels of the four candidate mRNAs were 
also assessed in patients with and without LNM. (E) The relationship between the expression levels of the four candidate mRNAs in fresh-frozen tumor 
samples and clinicopathological characteristics was analyzed. (F) Similarly, the relationship between mRNA expression levels in peripheral blood samples 
and clinicopathological characteristics was evaluated. (G) An association heatmap was generated based on the TCGA database to explore the relation-
ship between the four candidate mRNAs and common metastasis-related genes. (H) GO and KEGG pathway analyses of the four genes were performed 
using the Enrichr database. (I-L) PPI networks for each of the four candidate mRNAs (I: SDS, J: TESMIN, K: NEB, L: GRB14) were constructed using the online 
STRING database (https://string-db.org)

https://string-db.org
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Fig. 3 (See legend on next page.)
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predictive nomogram for LNM (Fig. 5B). In the training 
cohort, the RSA model demonstrated an AUC of 0.873 
(95% CI: 0.801–0.945, Fig.  5C), indicating strong pre-
dictive power for LNM. Based on a risk probability cut-
off derived from the Youden index, T1 GC cases were 
dichotomized, and confusion matrix and radar plot anal-
yses further supported the model’s predictive accuracy 
(Fig. 5E-upper; Fig. 5I; Supplementary Table 12). Calibra-
tion curve analysis confirmed the model’s high predictive 
performance (Fig. 5G). Applied to an external validation 
cohort (141 LNM-negative and 27 LNM-positive T1 
GC patients), the RSA model achieved an AUC of 0.852 
(95% CI: 0.774–0.930, Fig.  5D) with superior sensitivity 
(81.5%) and specificity (79.4%) compared to other models 
(Fig. 5E-lower; Fig. 5J; Supplementary Table 12). Further 
calibration analysis validated the model’s robust predic-
tive accuracy (Fig. 5H).

The primary aim of our study was to evaluate the clini-
cal utility of the RSA model, which combines a 4-mRNA 
biomarker panel and clinical features, for non-invasively 
identifying patients with actual LNM and reducing 
unnecessary surgeries in others. In the training cohort, 
only 15.0% of “high-risk” patients (22 of 147) had LNM, 
while the RSA model reclassified 69.4% as low-risk, 
reducing the potential overtreatment rate to 17.7% (26 
of 147), a significant improvement over the 85.0% rate 
associated with traditional pathological criteria (Fig.  5F, 
upper panel). Similar findings were observed in the exter-
nal validation cohort, where the RSA model markedly 
reduced overtreatment rates compared to other models 
(Fig. 5F, lower panel). Furthermore, clinical impact curve 
analysis across both cohorts supported the RSA model’s 
superior net benefit across a broad, clinically relevant 
range of threshold probabilities (Fig.  5K-L). Combined 
analysis of the training and validation cohorts showed 
that the RSA model reduced the conventionally assessed 
overtreatment rate from 84.4% to 56.0% (Fig. 5M), under-
scoring its effectiveness in clinical applications. In addi-
tion, the RSA model-based risk stratification effectively 
differentiated T1 GC patients, outperforming the eCura 
system (Supplementary Fig.  11). The RSA combina-
tion model improved the prediction accuracy for recur-
rence risk compared to the eCura system (AUC = 0.700, 
95% CI = 0.630–0.771), with the RSA model achieving an 

AUC of 0.807 (95% CI = 0.744–0.870) (Supplementary 
Fig. 12D-F).

4-mRNA panel shows significant specificity for LNM 
prediction of T1 GC compared to other gastrointestinal 
cancers
To assess the specificity of our 4-mRNA panel in pre-
dicting LNM in T1 GC patients, we employed a three-
pronged validation approach. First, we stratified 315 
T1 GC patients in both training and validation cohorts 
based on peripheral blood tumor markers (CEA, CA19-
9, CA72-4), resulting in 69 (21.9%) marker-positive 
and 246 (78.1%) marker-negative cases (Fig.  6A). Nota-
bly, the RSA model (AUC = 0.868, 95% CI: 0.803–0.933; 
Delong test, P < 0.001) outperformed the clinical model 
(AUC = 0.807, 95% CI: 0.803–0.933) for LNM prediction 
across both marker-positive and marker-negative cohorts 
(Fig. 6B–D).

The second approach involved prospective serum sam-
ples from a cohort (ChiCTR-IIR-17011197), collected 
pre-surgery (baseline) and at three months post-surgery 
(follow-up). ROC curve analysis demonstrated that the 
RSA model was the most accurate predictor, with an 
AUC of 0.812 (95% CI: 0.706–0.918), sensitivity of 80.0%, 
and specificity of 75.6% (P < 0.001; Fig.  6E). Calibration 
curve analysis closely matched the ideal result (Fig. 6F), 
and confusion matrix and radar plot analyses further con-
firmed the RSA model’s superior performance over both 
the clinical model (AUC = 0.707, sensitivity 66.7%, speci-
ficity 65.9%) and the 4-mRNA model alone (AUC = 0.788, 
sensitivity 100.0%, specificity 42.7%) (Fig. 6G, I, Supple-
mentary Fig.  6F; Supplementary Table 13). Clinical 
benefit analysis demonstrated that the RSA model signifi-
cantly reduced the high overtreatment rate from 84.5% 
to 14.4%, highlighting its potential for improved clinical 
decision-making and fewer unnecessary interventions 
(Fig.  6H, J). Further analysis of postoperative samples 
revealed significantly reduced levels of all four mRNAs 
(Fig.  6K) and a marked decrease in LNM risk probabil-
ity (P < 0.001; Fig. 6L). ROC analysis showed a substantial 
drop in predictive accuracy for LNM post-surgery, with 
AUC declining to 0.675, emphasizing the biomarkers’ 
preoperative specificity (Delong test, P < 0.001; Fig. 6M).

In the third approach, we extended the analysis to 
assess the 4-mRNA panel’s diagnostic performance 

(See figure on previous page.)
Fig. 3 Training and Validation of the 4-mRNA Signature for Predicting LNM in T1 Gastric Cancer Patients Using Fresh-Frozen Tissue Samples. (A) Correla-
tion analysis among the four candidate genes. (B) Nomogram constructed to predict LNM in T1 GC patients, based on the 4-mRNA signature combined 
with clinical features. (C) ROC curves of various predictive variables within the training dataset. (D) ROC curves of different predictive variables within the 
validation dataset. (E) Calibration curve of the RSA model in the training dataset. (F) Calibration curve of the RSA model in the validation dataset. (G) Con-
fusion matrices for different predictive models in the training and validation datasets. (H) Double-layer concentric circle plots displaying clinical benefit 
for different predictive models in the training and validation datasets. (I) Radar chart comparing evaluation metrics of different predictive models in the 
training dataset. (J) Radar chart comparing evaluation metrics of various predictive models in the validation dataset. (K) Clinical impact curve of the RSA 
model for patients in the training dataset. (L) Clinical impact curve of the RSA model for patients in the validation dataset. (M) Comparative analysis of the 
eCura scoring system versus the RSA model for identifying LNM, using a combined dataset from the training and validation sets
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Fig. 4 (See legend on next page.)

 



Page 11 of 18Ding et al. Journal of Experimental & Clinical Cancer Research           (2025) 44:43 

in other early gastrointestinal cancers (all T1 stage), 
including esophageal (n = 38), colon (n = 32), and rectal 
(n = 29) cancers (Fig.  6N). The 4-mRNA panel achieved 
significantly higher diagnostic accuracy for LNM in 
GC (AUC = 0.879) than in other cancers (esophageal: 
AUC = 0.621; colon: AUC = 0.696; rectal: AUC = 0.699; 
Fig. 6O). DeLong’s test confirmed the GC-specificity with 
statistically significant differences when compared to 
esophageal (P = 0.002), colon (P = 0.001), and rectal can-
cers (P = 0.001). Overall, these findings highlight the high 
specificity and clinical applicability of the 4-mRNA panel 
as a non-invasive blood-based biomarker, particularly 
well-suited for predicting LNM in T1 GC patients.

Biological characteristics and immune infiltration
To explore the immunological characterization of this 
feature, we performed GSEA functional enrichment anal-
ysis using RNA sequencing data of gastric cancer sam-
ples (LNM + vs. Non-LNM), and the results showed that 
tumor progression and immune regulation-related path-
ways such as Agiogenesis, PI3K AKT MTOR signaling, 
Inflammatory response, IL2 STAT5 signaling, Interferon 
α response, Interferon γ response, and TNFα pathway 
were significantly upregulated in the lymph node metas-
tasis group (Fig.  7A). In addition, the same trend was 
shown in further GSVA enrichment analysis (Fig.  7B). 
Since cell types vary with local signaling networks and 
drive cellular activities within tumors, we investigated 
whether cell states and multicellular communities dif-
fer between different features. We calculated the relative 
abundance of each immune cell in tumor tissue using two 
algorithms, CIRBERSORT and MCPcounter. In terms of 
cell state, the results showed a trend of higher abundance 
of immune cells in patients with lymph node metastasis 
(Fig. 7C-D).

Next, we focused on the characterization of immune 
infiltration in the local immune signaling environment. 
We calculated the immune infiltration score of each sam-
ple by ESTIMATE analysis, and the results showed that 
the stromal, immune and ESTIMATE scores of patients 
in the LNM group were significantly higher than those in 
the Non-LNM group (Fig.  7F). Further immune check-
point analysis results showed that most immune-related 
targets were expressed more highly in gastric cancer 
patients with lymph nodes (Fig.  7E, I-Q). These results 
indicate that immunotherapy has a potential effect on 
gastric cancer populations with lymph nodes. To further 

explore the biological functions that affect this feature, 
we used single-cell transcriptomes to reveal the potential 
role of related genes in the immune microenvironment. 
We obtained 10 cell subsets (Fig.  7G-H) by screening, 
dimensionality reduction, clustering and cell grouping of 
single-cell data, and showed the expression of 4 genes in 
the immune microenvironment. The results showed that 
SDS, TESMIN and NEB were all expressed in T cells and 
B cells (Supplementary Fig. 13).

Discussion
Our study addresses the limitations of currently used 
clinicopathological risk profiles in identifying LNM in 
“high-risk” subgroups of patients with T1 GC, where 
LNM presence is a crucial factor for additional surgery 
following curative endoscopic treatment. To the best 
of our knowledge, this is the first study to employ tran-
scriptomics-based liquid biopsy for predicting LNM in 
patients with pathologically high-risk T1 GC. Our find-
ings indicate that transcriptomic liquid biopsies using 
peripheral blood can accurately estimate the preop-
erative risk, offering significant clinical advantages for 
more effective risk stratification in LNM detection. This 
approach could substantially reduce the current overuse 
of surgical intervention in these patients. By accurately 
identifying high-risk T1 GC patients who truly have 
LNM and sparing others from unnecessary treatments, 
this method has the potential to decrease patient compli-
cations, lessen physician workload, and reduce associated 
healthcare costs.

In this study, we performed biomarker discovery by 
integrating data from two major public databases and 
six pairs of matched specimens subjected to mRNA 
sequencing. This approach enabled us to identify four 
mRNAs that are closely associated with LNM in patients 
with T1 GC. These mRNAs were significantly upregu-
lated in GC patients compared to those in adjacent nor-
mal mucosal tissues. We used the expression data of 
these mRNAs from surgically resected specimens, along 
with clinical features, to construct the RSA model for 
LNM. This model was validated in an external cohort 
from multiple centers, demonstrating that the diagnos-
tic accuracy of the RSA model for LNM (AUC = 0.890) 
significantly surpassed that of the existing clinical 
risk models (AUC = 0.820 [training] and 0.796 [valida-
tion]). Although all patients in our study were consid-
ered high-risk for LNM and underwent radical surgery, 

(See figure on previous page.)
Fig. 4 Transcriptome validation stage for identifying LNM in gastroscopic biopsy specimens from patients with T1 GC. (A) Correlation analysis of the four 
mRNAs in gastroscopy biopsy specimens and their paired surgical resection specimens. (B) Comparison of expression levels of the four mRNAs in gastros-
copy biopsy specimens and paired surgical resection specimens. (C) Screening process for the validation set of gastroscopy biopsy specimens. (D) ROC 
curves for various predictor variables in gastroscopy biopsy specimens. (E) Radar chart comparing evaluation metrics of different predictive models. (F) 
Confusion matrices of different predictive models. (G) Calibration curve of the RSA model in gastroscopy biopsy specimens. (H) Double-layer concentric 
circle plot showing clinical benefits of different predictive models. (I) Clinical impact curve of the RSA model within the validation set of gastroscopy 
biopsy specimens
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Fig. 5 Transcriptome validation phase for identification of LNM in peripheral blood specimens from patients with T1 GC. (A) Quality control analysis of 
peripheral blood specimens at different time points. (B) Construction of an LNM prediction nomogram for T1 GC patients based on the 4-mRNA signature 
combined with clinical features. (C) ROC curves of various predictor variables within the training dataset. (D) ROC curves of different predictor variables 
within the validation dataset. (E) Confusion matrices of different predictive models in the training and validation datasets. (F) Double-layer concentric 
circle plot illustrating clinical benefits of various predictive models in the training and validation datasets. (G) Calibration curve of the RSA model in the 
training dataset. (H) Calibration curve of the RSA model in the validation dataset. (I) Radar chart comparing evaluation metrics of different predictive mod-
els in the training dataset. (J) Radar chart comparing evaluation metrics of various predictive models in the validation dataset. (K) Clinical impact curve 
of the RSA model for patients in the training dataset. (L) Clinical impact curve of the RSA model for patients in the validation dataset. (M) Comparative 
analysis of the eCura scoring system versus the RSA model for identifying LNM, using a combined dataset from the training and validation sets
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Fig. 6 (See legend on next page.)
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postoperative pathological analysis indicated that only 
16.1% of patients (65 of 404, including both the training 
and validation cohorts) required this treatment, while 
83.9% underwent unnecessary surgery. In contrast, our 
RSA model indicated overtreatment in only 44.1% of 
cases, showing its superior effectiveness in LNM identi-
fication. Furthermore, we conducted re-validation using 
paired surgical biopsy specimens to evaluate whether 
the 4-mRNA panel could provide greater accuracy in 
identifying LNM in T1 GC, particularly in preopera-
tive biopsies. The findings revealed that the RSA model, 
based on the 4-mRNA panel and clinical characteristics, 
achieved an AUC of 0.928 (95%CI: 0.880–0.977), indicat-
ing enhanced diagnostic performance even in preopera-
tive biopsy specimens.

Numerous studies have shown the potential of endo-
scopic ultrasonography and abdominal CT in diagnosing 
LNM in patients with T1 GC; however, their diagnostic 
accuracy for LNM is often deemed insufficient [40–43]. 
Given that current clinical guidelines classify the pres-
ence of LNM as a critical factor in identifying high-risk 
T1 GC patients, there is a clear need to develop robust 
LNM biomarkers for pretreatment assessment, which 
could significantly transform clinical decision-making 
[7–8]. In our study, we converted these tissue-based 
markers into blood-based liquid biopsy assays and 
assessed their efficacy in predicting LNM in multiple 
independent serum-based clinical cohorts of patients 
with T1 GC. Through extensive training and validation 
of serum markers, we developed RSA model based on 
a 4-mRNA panel and clinically relevant variables. This 
model reliably identifies T1 GC patients with LNM. The 
successful validation of the RSA model in predicting 
LNM in pre-treatment serum samples highlights its clini-
cal importance in refining therapeutic approaches for 
patients with T1 GC, particularly those with confirmed 
LNM. Previous research has primarily focused on single 
specimen validation, often limited to single gene expres-
sion, without comprehensive sample-level validation 
for LNM diagnosis [44–48]. This approach can signifi-
cantly influence the selection of appropriate therapeutic 

strategies. The pre-operative application of our transcrip-
tomic biomarkers as a robust, straightforward, and cost-
effective assay aimed to minimize unnecessary surgical 
interventions, thereby reducing post-operative complica-
tions, surgery-related mortality, and the overall economic 
burden associated with such invasive procedures.

Furthermore, recent studies have addressed survival 
and recurrence risks in patients with early-stage GC. 
Hatta et al. emphasized that not all patients who do not 
meet the curative criteria for ESD require radical sur-
gery, suggesting that some high-risk early gastric cancer 
patients may benefit from a more tailored approach to 
treatment [49]. Similarly, Suzuki et al. reported clinical 
outcomes of early GC patients after noncurative ESD and 
highlighted the importance of distinguishing between 
those who truly require further treatment and those 
who do not, thereby helping to avoid overtreatment [50]. 
These findings underscore the need for improved pre-
dictive tools, such as our RSA model, which can more 
accurately assess recurrence and metastasis risk, thus 
informing clinical decisions and potentially reducing 
unnecessary surgeries.

Limitations
Our study has several potential limitations owing to its 
retrospective design, which may have introduced selec-
tion bias. First, the relatively small sample size, particu-
larly the limited number of patients with LNM, might 
have influenced the outcomes of our model construction. 
Therefore, future prospective clinical trials with larger 
patient cohorts are essential to validate the diagnostic 
accuracy of our constructed RSA model. Second, our 
training and validation cohorts consisted exclusively of 
Chinese patients who exhibited specific clinicopathologi-
cal characteristics. These characteristics might differ in 
patient populations from other countries, suggesting the 
need for cross-national studies with larger sample sizes 
to evaluate biomarker performance comprehensively. 
Such studies would help to translate these biomarkers 
into routine clinical practice and enhance the generaliz-
ability of our findings. Morover, we acknowledge that due 

(See figure on previous page.)
Fig. 6 Identification and Prediction of LNM in Patients with Different Peripheral Blood Tumor Marker Status Using a 4-mRNA Signature and Prospective 
Clinical Validation. (A) Distribution of different peripheral blood tumor marker statuses in a new cohort combining the training and validation sets. (B-C) 
ROC curves of various predictive models for patients with different peripheral blood tumor marker statuses in the validation set (B, positive; C, negative). 
(D) Comparison of AUC, sensitivity, and specificity for different predictive models in assessing LNM in patients with varying peripheral blood tumor marker 
statuses. (E) ROC curve for LNM prediction in a prospective observational study (ChiCTR-IIR-17011197) using different predictive models. (F) Calibration 
curve of the RSA model in the prospective validation set. (G) Radar chart comparing evaluation metrics of different predictive models in the prospective 
validation set. (H) Clinical impact curve of the RSA model within the prospective validation set. (I) Confusion matrices for different predictive models in 
the prospective validation set. (J) Double-layer concentric circle plot displaying the clinical benefits of various predictive models in the prospective vali-
dation set. (K) Comparison of the expression levels of the four mRNAs (I: SDS, J: TESMIN, K: NEB, L: GRB14) in peripheral blood samples taken at baseline 
and three months post-surgery in the prospective validation set. (L) Comparison of LNM risk probabilities based on preoperative and postoperative RSA 
model formulas constructed from transcriptomic profiles and clinical characteristics in peripheral blood. (M) Comparison of ROC curves for LNM predic-
tion based on the 4-mRNA signature in peripheral blood samples before and after surgery. (N) Recruitment status of patients with other gastrointestinal 
malignancies receiving endoscopic treatment. (O) ROC curve illustrating the 4-mRNA signature’s performance in predicting LNM in other gastrointestinal 
malignancies
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Fig. 7 Biological characteristics and immune infiltration in LNM and Non-LNM groups. (A-B) GSEA (A) and GSVA (B) enrichment analysis results 
from RNA sequencing data of gastric cancer samples, comparing LNM and Non-LNM groups. (C) Scores of combined cell types derived from the CIBER-
SORT algorithm, illustrating the proportional diversity among features. (D) Relative abundance of each immune cell calculated using the MCPcounter 
algorithm, displayed in a heat map. (E) Heat map showing expression levels of immune checkpoint genes in gastric cancer patients with LNM compared 
to those without LNM. (F) Violin plots illustrating differences in tumor purity, immune score, ESTIMATE score, and stromal score between gastric cancer 
patients with and without LNM. (G-H) t-SNE plots depicting cell type (G) and metastasis type (H) derived from single-cell data of gastric cancer patients. 
(I-Q) Violin plots displaying differences in immune checkpoint gene expression between gastric cancer patients with LNM and those without LNM
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to limited follow-up, our study currently lacks long-term 
survival data. However, we have outlined a long-term 
follow-up research plan to further assess the relationship 
between biomarker-based models and clinical outcomes. 
Lastly, while our risk stratification model incorporated 
mRNA and clinical factors, previous reports have high-
lighted the association of high expression of common 
clinical markers, such as HER2 and PDL1, and the pres-
ence of DNA mutations with LNM risk. Considering 
that fewer factors are generally more feasible for clinical 
application, future research should explore additional 
factors such as HER2, PDL1 markers, or DNA mutation 
status to determine whether these factors enhance the 
diagnostic accuracy for LNM detection. Despite these 
limitations, our study provides significant evidence for 
the detection of LNM in T1 GC patients, potentially 
contributing to the development of robust molecular 
biomarkers for the risk assessment and management of 
these fatal malignancies.

Conclusions
In conclusion, our study successfully identified and devel-
oped a novel risk stratification model that utilized liq-
uid biopsy assays for the detection of LNM. This model 
enables more reliable and accurate identification of high-
risk patients with T1 GC. Subject to validation in future 
prospective studies, our findings underscore the poten-
tial clinical significance of this model for optimizing the 
selection of patients with high-risk T1 GC. By doing 
so, it could substantially reduce the burden of unneces-
sary medical procedures, lower the associated costs, and 
enhance the overall management of patients with patho-
logically high-risk T1 GC.

Supplementary Information
The online version contains supplementary material available at  h t t p  s : /  / d o i  . o  r 
g /  1 0 .  1 1 8 6  / s  1 3 0 4 6 - 0 2 5 - 0 3 3 0 5 - x  .

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
(I)Conception and design: Qun Zhao and Lingjiao Meng; (II) Administrative 
support: Qun Zhao; (III) Provision of study materials or patients: Ping’an Ding, 
Jiaxiang Wu, Haotian Wu, Tongkun Li, Wenqian Ma, Honghai Guo, Yuan Tian, 
Peigang Yang, Jiaxuan Yang, Limian Er, Renjun Gu, Lilong Zhang, Ning Meng, 
Xiaolong Li, Guoliang Zheng, Lingjiao Meng, Qun Zhao; (IV) Collection and 
assembly of data: Haotian Wu, Jiaxiang Wu, Tongkun Li; (V) Data analysis and 
interpretation: Ping’an Ding, Haotian Wu, Jiaxiang Wu; (VI) Manuscript writing: 
Ping’an Ding, Lingjiao Meng, Haotian Wu, Jiaxiang Wu,; (VII) Final approval of 
manuscript: All authors.

Funding
S&T Program of Hebei (23297701Z, 242W7713Z); Supported by Hebei Natural 
Science Foundation (H2022206599); Hebei Provincial Government-funded 
Clinical Talent Project (ZF2025180).

Data availability
The participant data with identifiers used to support the findings of this study 
were supplied by Qun Zhao under license, and thus cannot be made freely 
available. The requests for access to these data should be made to Qun Zhao, 
zhaoqun@hebmu.edu.cn.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the Ethics Committee of the Fourth 
Hospital of Hebei Medical University (approval number: 2024KY125), and 
informed consent was obtained from all the study participants. All authors 
followed the applicable ethical standards to maintain research integrity 
without any duplication, fraud, or plagiarism issues.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Ethical Statement
All authors certify that they comply with the ethical guidelines for authorship.

Conflict of interest
The authors declare no potential conflicts of interest.

Author details
1The Third Department of Surgery, the Fourth Hospital of Hebei Medical 
University, Shijiazhuang, Hebei 050011, China
2Hebei Key Laboratory of Precision Diagnosis and Comprehensive 
Treatment of Gastric Cancer, Shijiazhuang 050011, China
3Big data analysis and mining application for precise diagnosis and 
treatment of gastric cancer Hebei Provincial Engineering Research Center, 
Shijiazhuang 050011, China
4Department of Endoscopy, The Fourth Hospital of Hebei Medical 
University, Shijiazhuang 050011, China
5School of Chinese Medicine, School of Integrated Chinese and Western 
Medicine, Nanjing University of Chinese Medicine, Nanjing,  
Jiangsu 210023, China
6Department of Gastroenterology and Hepatology, Jinling Hospital, 
Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
7Department of General Surgery, Renmin Hospital of Wuhan University, 
Wuhan, Hubei 430065, China
8Department of General Surgery, Shijiazhuang People’s Hospital, 
Shijiazhuang, Hebei 050050, China
9Department of General Surgery, Baoding Central Hospital, Baoding, 
Hebei 071030, China
10General Surgery Department, Hengshui People’s Hospital, Hengshui, 
Hebei 053099, China
11Research Center, Tumor Research Institute of the Fourth Hospital of 
Hebei Medical University, Shijiazhuang 050011, China

Received: 17 November 2024 / Accepted: 27 January 2025

References
1. Shen M, Xia R, Luo Z, Zeng H, Wei W, Zhuang G, et al. The long-term popula-

tion impact of endoscopic screening programmes on disease burdens 
of gastric cancer in China: a mathematical modelling study. J Theor Biol. 
2020;484:109996.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 1 6  / j  . j t b i . 2 0 1 9 . 1 0 9 9 9 6.

2. Wang FH, Zhang XT, Tang L, Wu Q, Cai MY, Li YF, et al. The Chinese Society of 
Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment 
of gastric cancer, 2023. Cancer Commun (Lond). 2024;44(1):127–72.  h t t p  s : /  / d 
o i  . o  r g /  1 0 .  1 0 0 2  / c  a c 2 . 1 2 5 1 6.

3. Xin Y, Zhang Q, Liu X, Li B, Mao T, Li X. Application of artificial intelligence in 
endoscopic gastrointestinal tumors. Front Oncol. 2023;13:1239788.  h t t p  s : /  / d o 
i  . o  r g /  1 0 .  3 3 8 9  / f  o n c . 2 0 2 3 . 1 2 3 9 7 8 8.

https://doi.org/10.1186/s13046-025-03305-x
https://doi.org/10.1186/s13046-025-03305-x
https://doi.org/10.1016/j.jtbi.2019.109996
https://doi.org/10.1002/cac2.12516
https://doi.org/10.1002/cac2.12516
https://doi.org/10.3389/fonc.2023.1239788
https://doi.org/10.3389/fonc.2023.1239788


Page 17 of 18Ding et al. Journal of Experimental & Clinical Cancer Research           (2025) 44:43 

4. Panarese A. Endoscopic resection for early gastric cancer: towards a global 
understanding. World J Gastroenterol. 2022;28(13):1377–9.  h t t p  s : /  / d o i  . o  r g /  1 0 .  
3 7 4 8  / w  j g . v 2 8 . i 1 3 . 1 3 7 7.

5. Draganov PV, Wang AY, Othman MO, Fukami N. AGA Institute Clinical Practice 
Update: endoscopic submucosal dissection in the United States. Clin Gastro-
enterol Hepatol. 2019;17(1):16–e251.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 1 6  / j  . c g h . 2 0 1 8 . 0 7 . 0 4 
1.

6. Pimentel-Nunes P, Libânio D, Bastiaansen BAJ, Bhandari P, Bisschops R, Bourke 
MJ, et al. Endoscopic submucosal dissection for superficial gastrointestinal 
lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - 
Update 2022. Endoscopy. 2022;54(6):591–622.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 5 5  / a  - 1 8 1 
1 - 7 0 2 5.

7. ASGE standards of practice committee, Forbes N, Elhanafi SE, Al-Haddad MA, 
Thosani NC, Draganov PV, et al. The American Society for Gastrointestinal 
Endoscopy guideline on endoscopic submucosal dissection for the manage-
ment of early esophageal and gastric cancers: Summary and recommenda-
tions. Gastrointest Endosc. 2023;98(3):271–84.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 1 6  / j  . g i e . 2 0 
2 3 . 0 3 . 0 1 5.

8. Libânio D, Pimentel-Nunes P, Bastiaansen B, Bisschops R, Bourke MJ, Deprez 
PH, et al. Endoscopic submucosal dissection techniques and technology: 
European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. 
Endoscopy. 2023;55(4):361–89.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 5 5  / a  - 2 0 3 1 - 0 8 7 4.

9. Vos EL, Nakauchi M, Gönen M, Castellanos JA, Biondi A, Coit DG, et al. Risk of 
Lymph Node Metastasis in T1b gastric Cancer: an International Compre-
hensive Analysis from the Global Gastric Group (G3) alliance. Ann Surg. 
2023;277(2):e339–45.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 9 7  / S  L A .  0 0 0  0 0 0 0  0 0  0 0 0 5 3 3 2.

10. Hatta W, Gotoda T, Oyama T, Kawata N, Takahashi A, Yoshifuku Y, et al. A Scor-
ing System to Stratify Curability after Endoscopic Submucosal dissection for 
early gastric Cancer: eCura system. Am J Gastroenterol. 2017;112(6):874–81.  h 
t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 3 8  / a  j g . 2 0 1 7 . 9 5.

11. Morais R, Libanio D, Dinis Ribeiro M, Ferreira A, Barreiro P, Bourke MJ, et al. 
Predicting residual neoplasia after a non-curative gastric ESD: validation and 
modification of the eCura system in the western setting: the W-eCura score. 
Gut. 2023;73(1):105–17.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 3 6  / g  u t j n l - 2 0 2 3 - 3 3 0 8 0 4.

12. Jin CQ, Zhao J, Ding XY, Yu LL, Ye GL, Zhu XJ, Shen JW, Yang Y, Jin B, Zhang CL, 
Lv B. Clinical outcomes and risk factors of non-curative endoscopic submu-
cosal dissection for early gastric cancer: a retrospective multicenter study in 
Zhejiang, China. Front Oncol. 2023;13:1225702.  h t t p  s : /  / d o i  . o  r g /  1 0 .  3 3 8 9  / f  o n c . 
2 0 2 3 . 1 2 2 5 7 0 2.

13. Hatta W, Gotoda T, Oyama T, Kawata N, Takahashi A, Yoshifuku Y, et al. Is the 
eCura system useful for selecting patients who require radical surgery after 
noncurative endoscopic submucosal dissection for early gastric cancer? A 
comparative study. Gastric Cancer. 2018;21(3):481–9.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 7  / 
s  1 0 1 2 0 - 0 1 7 - 0 7 6 9 - 7.

14. Lee S, Kim SG, Cho SJ. Decision to perform additional surgery after non-
curative endoscopic submucosal dissection for gastric cancer based on the 
risk of lymph node metastasis: a long-term follow-up study. Surg Endosc. 
2023;37(10):7738–48.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 7  / s  0 0 4 6 4 - 0 2 3 - 1 0 3 2 4 - 2.

15. Niwa H, Ozawa R, Kurahashi Y, Kumamoto T, Nakanishi Y, Okumura K, et al. 
The eCura system as a novel indicator for the necessity of salvage surgery 
after non-curative ESD for gastric cancer: a case-control study. PLoS ONE. 
2018;13(10):e0204039.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 3 7 1  / j  o u r  n a l  . p o n  e .  0 2 0 4 0 3 9.

16. Tian YT, Ma FH, Wang GQ, Zhang YM, Dou LZ, Xie YB, et al. Additional lapa-
roscopic gastrectomy after noncurative endoscopic submucosal dissection 
for early gastric cancer: a single-center experience. World J Gastroenterol. 
2019;25(29):3996–4006.  h t t p  s : /  / d o i  . o  r g /  1 0 .  3 7 4 8  / w  j g . v 2 5 . i 2 9 . 3 9 9 6.

17. Serra O, Galán M, Ginesta MM, Calvo M, Sala N, Salazar R. Comparison and 
applicability of molecular classifications for gastric cancer. Cancer Treat Rev. 
2019;77:29–34.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 1 6  / j  . c t r v . 2 0 1 9 . 0 5 . 0 0 5.

18. Tirino G, Pompella L, Petrillo A, Laterza MM, Pappalardo A, Caterino M, et al. 
What’s New in Gastric Cancer: the therapeutic implications of Molecular clas-
sifications and Future perspectives. Int J Mol Sci. 2018;19(9):2659.  h t t p  s : /  / d o i  . 
o  r g /  1 0 .  3 3 9 0  / i  j m s 1 9 0 9 2 6 5 9.

19. Chen D, Cheung H, Lau HC, Yu J, Wong CC. N6-Methyladenosine RNA-Binding 
protein YTHDF1 in gastrointestinal cancers: function, molecular mechanism 
and clinical implication. Cancers (Basel). 2022;14(14):3489.  h t t p  s : /  / d o i  . o  r g /  1 0 .  
3 3 9 0  / c  a n c e r s 1 4 1 4 3 4 8 9.

20. Ding P, Wu J, Wu H, Li T, Niu X, Yang P, Guo H, Tian Y, He J, Yang J, Gu R, Zhang 
L, Meng N, Li X, Guo Z, Meng L, Zhao Q. Transcriptomics-based Liquid Biopsy 
for early detection of recurrence in locally advanced gastric Cancer. Adv Sci 
(Weinh). 2024;11(47):e2406276.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 2  / a  d v s . 2 0 2 4 0 6 2 7 6.

21. Guo T, Tang XH, Gao XY, Zhou Y, Jin B, Deng ZQ, et al. A liquid biopsy 
signature of circulating exosome-derived mRNAs, miRNAs, and lncRNAs 
predict therapeutic efficacy to neoadjuvant chemotherapy in patients with 
advanced gastric cancer. Mol Cancer. 2022;21(1):216.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 8 6  / 
s  1 2 9 4 3 - 0 2 2 - 0 1 6 8 4 - 9.

22. Qiu MZ, Li ZH, Zhou ZW, Li YH, Wang ZQ, Wang FH, et al. Detection of carci-
noembryonic antigen messenger RNA in blood using quantitative real-time 
reverse transcriptase-polymerase chain reaction to predict recurrence of 
gastric adenocarcinoma. J Transl Med. 2010;8:107.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 8 6  / 1  4 
7 9 - 5 8 7 6 - 8 - 1 0 7.

23. Kang Y, Zhang J, Sun P, Shang J. Circulating cell-free human telomerase 
reverse transcriptase mRNA in plasma and its potential diagnostic and prog-
nostic value for gastric cancer. Int J Clin Oncol. 2013;18(3):478–86.  h t t p  s : /  / d o i  . 
o  r g /  1 0 .  1 0 0 7  / s  1 0 1 4 7 - 0 1 2 - 0 4 0 5 - 9.

24. Arigami T, Uenosono Y, Hirata M, Yanagita S, Ishigami S, Natsugoe S. B7-H3 
expression in gastric cancer: a novel molecular blood marker for detecting 
circulating tumor cells. Cancer Sci. 2011;102(5):1019–24.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 
1 1  / j  . 1 3  4 9 -  7 0 0 6  . 2  0 1 1 . 0 1 8 7 7 . x.

25. Shi W, Wang Y, Xu C, Li Y, Ge S, Bai B, et al. Multilevel proteomic analyses reveal 
molecular diversity between diffuse-type and intestinal-type gastric cancer. 
Nat Commun. 2023;14(1):835.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 3 8  / s  4 1 4 6 7 - 0 2 3 - 3 5 7 9 7 - 6.

26. Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, et al. Regulatory enhancer 
profiling of mesenchymal-type gastric cancer reveals subtype-specific epig-
enomic landscapes and targetable vulnerabilities. Gut. 2023;72(2):226–41.  h t t 
p  s : /  / d o i  . o  r g /  1 0 .  1 1 3 6  / g  u t j n l - 2 0 2 1 - 3 2 6 4 8 3.

27. Chida K, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi K, et al. 
Transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors to identify 
determinants of responsiveness to Anti-PD-1 therapy. Clin Cancer Res. 
2022;28(10):2110–7.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 5 8  / 1  0 7 8  - 0 4  3 2 . C  C R  - 2 2 - 0 0 4 1.

28. Wang J, Qin D, Tao Z, Wang B, Xie Y, Wang Y, et al. Identification of cupropto-
sis-related subtypes, construction of a prognosis model, and tumor microen-
vironment landscape in gastric cancer. Front Immunol. 2022;13:1056932.  h t t p  
s : /  / d o i  . o  r g /  1 0 .  3 3 8 9  / fi   m m u . 2 0 2 2 . 1 0 5 6 9 3 2.

29. Zhou H, Zhu L, Song J, Wang G, Li P, Li W, et al. Liquid biopsy at the frontier of 
detection, prognosis and progression monitoring in colorectal cancer. Mol 
Cancer. 2022;21(1):86.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 8 6  / s  1 2 9 4 3 - 0 2 2 - 0 1 5 5 6 - 2.

30. Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, et al. 
Dynamic liquid biopsy components as predictive and prognostic biomarkers 
in colorectal cancer. J Exp Clin Cancer Res. 2022;41(1):99.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 
1 8 6  / s  1 3 0 4 6 - 0 2 2 - 0 2 3 1 8 - 0.

31. Nakamura K, Hernández G, Sharma GG, Wada Y, Banwait JK, González N, et al. 
Liquid biopsy signature for detection of patients with early onset colorectal 
cancer. Gastroenterology. 2022;163(5):1242–e12512.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 5 3  / j  
. g a  s t r  o . 2 0  2 2  . 0 6 . 0 8 9.

32. Miyazaki K, Wada Y, Okuno K, Murano T, Morine Y, Ikemoto T, et al. Exosome-
based liquid biopsy signature for pre-operative identification of lymph node 
metastasis in patients with pathological high-risk T1 colorectal cancer. Mol 
Cancer. 2023;22(1):2.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 8 6  / s  1 2 9 4 3 - 0 2 2 - 0 1 6 8 5 - 8.

33. Kandimalla R, Ozawa T, Gao F, Wang X, Goel A, T1 Colorectal Cancer Study 
Group. Gene expression signatures in surgical issues and endoscopic 
biopsies identified high-risk T1 colorectal cancers. Gastroenterology. 
2019;156(8):2338–e23413.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 5 3  / j  . g a  s t r  o . 2 0  1 9  . 0 2 . 0 2 7.

34. Ozawa T, Kandimalla R, Gao F, Nozawa H, Hata K, Nagata H, et al. A MicroRNA 
signature Associated with metastasis of T1 colorectal cancers to Lymph 
Nodes. Gastroenterology. 2018;154(4):844–e8487.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 5 3  / j  . g 
a  s t r  o . 2 0  1 7  . 1 1 . 2 7 5.

35. Xue L, Zhao Z, Wang M, Ma L, Lin H, Wang S, et al. A liquid biopsy signa-
ture predicts lymph node metastases in T1 esophageal squamous cell 
carcinoma: implications for precision treatment strategies. Br J Cancer. 
2022;127(11):2052–9.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 3 8  / s  4 1 4 1 6 - 0 2 2 - 0 1 9 9 7 - y.

36. Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, et al. Gastric 
Cancer, Version 2.2022, NCCN Clinical Practice guidelines in Oncology. J Natl 
Compr Canc Netw. 2022;20(2):167–92.  h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 0 4  / j  n c c n . 2 0 2 2 . 0 0 
0 8.

37. Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, 
Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine 
modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/
VEGFA signaling in gastric cancer. Oncogene. 2024;43(34):2548–63.  h t t p  s : /  / d o 
i  . o  r g /  1 0 .  1 0 3 8  / s  4 1 3 8 8 - 0 2 4 - 0 3 0 9 9 - w.

38. Ding P, Wu H, Wu J, Li T, Gu R, Zhang L, Yang P, Guo H, Tian Y, He J, Yang J, Meng 
N, Li X, Meng L, Zhao Q. Transcriptomics-based liquid biopsy panel for early non-
invasive identification of peritoneal recurrence and micrometastasis in locally 

https://doi.org/10.3748/wjg.v28.i13.1377
https://doi.org/10.3748/wjg.v28.i13.1377
https://doi.org/10.1016/j.cgh.2018.07.041
https://doi.org/10.1016/j.cgh.2018.07.041
https://doi.org/10.1055/a-1811-7025
https://doi.org/10.1055/a-1811-7025
https://doi.org/10.1016/j.gie.2023.03.015
https://doi.org/10.1016/j.gie.2023.03.015
https://doi.org/10.1055/a-2031-0874
https://doi.org/10.1097/SLA.0000000000005332
https://doi.org/10.1038/ajg.2017.95
https://doi.org/10.1038/ajg.2017.95
https://doi.org/10.1136/gutjnl-2023-330804
https://doi.org/10.3389/fonc.2023.1225702
https://doi.org/10.3389/fonc.2023.1225702
https://doi.org/10.1007/s10120-017-0769-7
https://doi.org/10.1007/s10120-017-0769-7
https://doi.org/10.1007/s00464-023-10324-2
https://doi.org/10.1371/journal.pone.0204039
https://doi.org/10.3748/wjg.v25.i29.3996
https://doi.org/10.1016/j.ctrv.2019.05.005
https://doi.org/10.3390/ijms19092659
https://doi.org/10.3390/ijms19092659
https://doi.org/10.3390/cancers14143489
https://doi.org/10.3390/cancers14143489
https://doi.org/10.1002/advs.202406276
https://doi.org/10.1186/s12943-022-01684-9
https://doi.org/10.1186/s12943-022-01684-9
https://doi.org/10.1186/1479-5876-8-107
https://doi.org/10.1186/1479-5876-8-107
https://doi.org/10.1007/s10147-012-0405-9
https://doi.org/10.1007/s10147-012-0405-9
https://doi.org/10.1111/j.1349-7006.2011.01877.x
https://doi.org/10.1111/j.1349-7006.2011.01877.x
https://doi.org/10.1038/s41467-023-35797-6
https://doi.org/10.1136/gutjnl-2021-326483
https://doi.org/10.1136/gutjnl-2021-326483
https://doi.org/10.1158/1078-0432.CCR-22-0041
https://doi.org/10.3389/fimmu.2022.1056932
https://doi.org/10.3389/fimmu.2022.1056932
https://doi.org/10.1186/s12943-022-01556-2
https://doi.org/10.1186/s13046-022-02318-0
https://doi.org/10.1186/s13046-022-02318-0
https://doi.org/10.1053/j.gastro.2022.06.089
https://doi.org/10.1053/j.gastro.2022.06.089
https://doi.org/10.1186/s12943-022-01685-8
https://doi.org/10.1053/j.gastro.2019.02.027
https://doi.org/10.1053/j.gastro.2017.11.275
https://doi.org/10.1053/j.gastro.2017.11.275
https://doi.org/10.1038/s41416-022-01997-y
https://doi.org/10.6004/jnccn.2022.0008
https://doi.org/10.6004/jnccn.2022.0008
https://doi.org/10.1038/s41388-024-03099-w
https://doi.org/10.1038/s41388-024-03099-w


Page 18 of 18Ding et al. Journal of Experimental & Clinical Cancer Research           (2025) 44:43 

advanced gastric cancer. J Exp Clin Cancer Res. 2024;43(1):181.  h t t p  s : /  / d o i  . o  r g /  1 
0 .  1 1 8 6  / s  1 3 0 4 6 - 0 2 4 - 0 3 0 9 8 - 5.

39. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene 
set knowledge discovery with enrichment. Curr Protocols. 2021;1(3):e90.  h t t p  
s : /  / d o i  . o  r g /  1 0 .  1 0 0 2  / c  p z 1 . 9 0.

40. Mocellin S, Pasquali S. Diagnostic accuracy of endoscopic ultrasonography 
(EUS) for the preoperative locoregional staging of primary gastric cancer. 
Cochrane Database Syst Rev. 2015;2015(2):CD009944.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 2  
/ 1  4 6 5  1 8 5  8 . C D  0 0  9 9 4 4 . p u b 2.

41. Chen C, Song YL, Wu ZY, Chen J, Zhang Y, Chen L. Diagnostic value of conven-
tional endoscopic ultrasound for lymph node metastasis in upper gastroin-
testinal neoplasia: a meta-analysis. World J Gastroenterol. 2023;29(30):4685–
700.  h t t p  s : /  / d o i  . o  r g /  1 0 .  3 7 4 8  / w  j g . v 2 9 . i 3 0 . 4 6 8 5.

42. Pierantoni C, Lisotti A, Fusaroli P. Prediction of the risk of Lymph Node 
metastases in early gastric Cancer: contrast-enhanced harmonic endoscopic 
Ultrasonography May help. Gut Liver. 2021;15(6):940–1.  h t t p  s : /  / d o i  . o  r g /  1 0 .  5 0 
0 9  / g  n l 2 1 0 1 2 2.

43. Sun Z, Li J, Wang T, Xie Z, Jin L, Hu S. Predicting perigastric lymph node 
metastasis in gastric cancer with CT perfusion imaging: a prospective analy-
sis. Eur J Radiol. 2020;122:108753.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 1 6  / j  . e j  r a d  . 2 0 1  9 .  1 0 8 7 5 3.

44. An HJ, Lee JS, Yang JW, Kim MH, Na JM, Song DH. RAB27A and RAB27B expres-
sion levels may predict lymph node metastasis and survival in patients with 
gastric cancer. Cancer Genomics Proteom. 2022 Sep-Oct;19(5):606–13.  h t t p  s : /  
/ d o i  . o  r g /  1 0 .  2 1 8 7  3 /  c g p . 2 0 3 4 5.

45. You X, Wang Y, Wu J, Liu Q, Chen D, Tang D, et al. Aberrant cytokeratin 20 
mRNA expression in Peripheral Blood and Lymph Nodes indicates Micro-
metastasis and poor prognosis in patients with gastric carcinoma. Technol 
Cancer Res Treat. 2019;18:1533033819832856.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 1 7 7  / 1  5 3 3 0 
3 3 8 1 9 8 3 2 8 5 6.

46. Song Z, Zhao W, Cao D, Zhang J, Chen S. Elementary screening of lymph 
node metastasis-related genes in gastric cancer based on the co-expression 
network of messenger RNA, microRNA, and long non-coding RNA. Braz J 
Med Biol Res. 2018;51(4):e6685.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 5 9 0  / 1  4 1 4 - 4 3 1 x 2 0 1 7 6 6 8 5.

47. Miyachi K, Sasaki K, Onodera S, Taguchi T, Nagamachi M, Kaneko H, et al. Cor-
relation between survivin mRNA expression and lymph node metastasis in 
gastric cancer. Gastric Cancer. 2003;6(4):217–24.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 7  / s  1 0 1 
2 0 - 0 0 3 - 0 2 5 5 - 2.

48. Zhang J, Liu F, Yang Y, Yu N, Weng X, Yang Y, et al. Integrated DNA and RNA 
sequencing reveals early drivers involved in metastasis of gastric cancer. Cell 
Death Dis. 2022;13(4):392.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 3 8  / s  4 1 4 1 9 - 0 2 2 - 0 4 8 3 8 - 1.

49. Hatta W, Gotoda T, Oyama T, Kawata N, Takahashi A, Yoshifuku Y, Hoteya S, 
Nakamura K, Hirano M, Esaki M, Matsuda M, Ohnita K, Shimoda R, Yoshida 
M, Dohi O, Takada J, Tanaka K, Yamada S, Tsuji T, Ito H, Hayashi Y, Nakamura 
T, Shimosegawa T. Is radical surgery necessary in all patients who do not 
meet the curative criteria for endoscopic submucosal dissection in early 
gastric cancer? A multi-center retrospective study in Japan. J Gastroenterol. 
2017;52(2):175–84.  h t t p  s : /  / d o i  . o  r g /  1 0 .  1 0 0 7  / s  0 0 5 3 5 - 0 1 6 - 1 2 1 0 - 4.

50. Suzuki H, Oda I, Abe S, Sekiguchi M, Nonaka S, Yoshinaga S, Saito Y, Fukagawa 
T, Katai H. Clinical outcomes of early gastric cancer patients after noncurative 
endoscopic submucosal dissection in a large consecutive patient series. Gastric 
Cancer. 2017;20(4):679–89.  h t t p s :   /  / d o  i .  o r  g  /  1 0  . 1 0   0 7  / s 1 0  1 2 0 -  0 1 6 -  0 6 5 1 - z.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1186/s13046-024-03098-5
https://doi.org/10.1186/s13046-024-03098-5
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1002/cpz1.90
https://doi.org/10.1002/14651858.CD009944.pub2
https://doi.org/10.1002/14651858.CD009944.pub2
https://doi.org/10.3748/wjg.v29.i30.4685
https://doi.org/10.5009/gnl210122
https://doi.org/10.5009/gnl210122
https://doi.org/10.1016/j.ejrad.2019.108753
https://doi.org/10.21873/cgp.20345
https://doi.org/10.21873/cgp.20345
https://doi.org/10.1177/1533033819832856
https://doi.org/10.1177/1533033819832856
https://doi.org/10.1590/1414-431x20176685
https://doi.org/10.1007/s10120-003-0255-2
https://doi.org/10.1007/s10120-003-0255-2
https://doi.org/10.1038/s41419-022-04838-1
https://doi.org/10.1007/s00535-016-1210-4
https://doi.org/10.1007/s10120-016-0651-z

	Preoperative liquid biopsy transcriptomic panel for risk assessment of lymph node metastasis in T1 gastric cancer
	Abstract
	Introduction
	Methods and materials
	Biomarker discovery in genome-wide expression profiling datasets
	Clinical cohorts for biomarker validation
	Inclusion and exclusion criteria
	RNA extraction and gene expression analysis
	Protein-protein Interaction network and pathway analysis
	Statistical analysis

	Results
	Discovery of candidate genes predicting LNM in T1 GC patients
	Validation of surgical resection specimens for 4-mRNA panel predicting LNM in T1 GC patients
	Validation of gastroscopic biopsy specimens for predicting the 4-mRNA panel of LNM in T1GC patients
	Liquid biopsy specimen validation of a 4-mRNA panel predicting LNM in T1GC patients
	4-mRNA panel shows significant specificity for LNM prediction of T1 GC compared to other gastrointestinal cancers
	Biological characteristics and immune infiltration

	Discussion
	Limitations

	Conclusions
	References


