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Abstract
Background Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype 
of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and 
fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. 
However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for 
PitNET-induced bone invasion are lacking in clinical practice.

Methods In this study, we performed single-cell (n = 87,287) RNA sequencing on 10 cases of bone-invasive PitNETs 
and 5 cases of non-bone-invasion PitNETs (Non-BI PitNETs). We identified various cell types and determined their 
interactions through cell-cell communication analysis, which was further validated experimentally.

Results We identified a novel TNF-α+ TAM macrophage subset. BI PitNETs showed increased IL-34 secretion, 
impacting TNF-α+ TAMs via the IL34/CSF1R axis, leading to TNF-α production. TNF-α+ TAMs, in turn, communicate 
with CD14+ monocytes to promote their differentiation into osteoclasts and leading to bone invasion. In addition, we 
defined a gene signature for TNF-α+ TAM to guide the clinical prognosis prediction of BI PitNETs.

Conclusions Our study elucidates the tumor microenvironment changes in bone invasion and identifies the critical 
role of TNF-α+ TAMs in promoting bone invasion of PitNETs, laying a foundation for developing new molecular 
markers or therapeutic agents targeting BI PitNETs.
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Background
Pituitary neuroendocrine tumors (PitNETs) are preva-
lent neoplasms originating from the anterior pituitary 
gland, comprising approximately 17.1% of intracranial 
tumors [1]. PitNETs may lead to clinical symptoms either 
excessive hormone secretion or due to the mass effect of 
the tumor. Although most PitNETs are benign, a subset 
demonstrates aggressive behavior by infiltrating the sur-
rounding tissues and therefore, posing challenges dur-
ing surgical removal, decreasing the chance of complete 
resection, and increasing the risk of recurrence. Among 
them, bone-invasive PitNETs (BI PitNETs) are the most 
aggressive type. Normal bone invaded by the tumor often 
becomes fragmented and enveloped by tumor tissue, 
necessitating delicate intraoperative handling. Improper 
management during surgery can result in direct damage 
to vital blood vessels, cranial nerves, dura mater, or brain 
tissue, markedly increasing surgical complexity and risks 
[2]. Currently, effective treatment modalities for such 
tumors remain elusive.

In recent years, research on the tumor microenviron-
ment (TME) and immunotherapy has gained prominence 
in oncology [3]. Interactions among these components 
have been proven to promote tumor initiation, progres-
sion, invasion, and metastasis [4]. Studies have indicated 
that infiltration of various immune cells within the TME 
of PitNETs is highly correlated with tumor progression 
and invasion [5, 6]. Notably, macrophages are the most 
abundant immune cells in the PitNET TME and play piv-
otal roles [7]. While preliminary research on the impact 
of TME on bone invasion has been conducted in other 
tumors, the underlying mechanisms remain largely 
unknown. In addition, studies on the role of TME in Pit-
NETs -induced bone invasion are still lacking.

Single-cell RNA sequencing (scRNA-seq) technology 
has been widely employed to investigate the composition 
of the TME and the associated tumor pathogenesis [8]. 
In this study, we performed single-cell (n = 87,287) RNA 
sequencing on 10 cases of bone-invasive PitNETs and 5 
cases of non-bone-invasion PitNETs (Non-BI PitNETs). 
We established a cellular atlas of the immune microenvi-
ronment specific to bone-invasive PitNETs and identified 
a novel subset of macrophages. Through cell-cell com-
munication analysis, we further elucidated their crucial 
role in the process of bone invasion, offering new per-
spectives for the treatment and prevention of bone inva-
sion in patients with PitNETs.

Materials and methods
Patients and clinical specimens
From October 2022 to March 2023, we collected 10 BI 
and 5 Non-BI PitNET samples from patients undergoing 
tumor resection at Beijing Tiantan Hospital for single-cell 

sequencing, with sample details in Supplementary Table 
S1.

To determine whether different pathological types 
affect the invasiveness of PitNETs, we conducted a com-
parative analysis of the invasiveness of bone in different 
types of PitNETs using a group of 190 bulk sequencing 
samples. This confirmed that there is no significant cor-
relation between bone invasion and pathological types. 
Detailed results can be found in Supplementary Table S2.

Therefore, in conducting this study, we mainly focused 
on the bone invasion status and did not differentiate 
pathological types during the grouping. One additional 
BI sample was collected for spatial transcriptomics. All 
diagnoses were confirmed by a multidisciplinary team. 
Bone-invasive PitNETs were classified based on MRI 
(Knosp grades 3–4, Hardy–Wilson grades 3–4, or stage 
D-E), CT (involvement of sellar floor, slopes, or discon-
tinuous bone cortex), and intraoperative findings (bone 
invasion with fragments). Ethical approval was obtained 
(KY 2018-053-02), and informed consent was provided 
by all patients.

Preprocessing of single-cell samples and spatial 
transcriptomics sample
Fresh PitNET tissues were digested with PBS, collagenase 
II/IV for 30 min at 37 °C, then filtered through a 45-µm 
mesh. After resuspension in L15 medium with 10% FBS, 
a second digestion with Accutase dissociated cell clus-
ters. Immune cells were enriched using CD45 magnetic 
beads and mixed with CD45− cells at a 1:1 ratio, then cul-
tured in L15 medium with 10% FBS.

Single-cell RNA sequencing
Single-cell suspensions were processed using the Chro-
mium Single-Cell Expression Solution (10× Genomics) 
to capture 5000-10,000 cells per library. Libraries were 
sequenced on the HiSeq4000 platform (Illumina) with 
150 bp paired-end reads.

Bulk RNA-seq analysis
Reads were aligned to the human hg38 reference genome 
using the STAR aligner (v 2.7.7a) [9]. Read count matri-
ces were generated using the featureCounts function 
from the Rsubread package (v 2.0.1). These matrices were 
finally converted to TPM values, and then log2 trans-
formed [10].

scRNA-seq data processing
Raw sequencing data were processed using Cell Ranger 
(v6.0.2) with default settings and aligned to GRCH38 to 
generate gene expression matrices. These were analyzed 
with Scanpy (v1.8.1) [11] for quality control and down-
stream analysis. Low-quality cells (fewer than 200 genes/
cell and fewer than 3 cells/gene) and outliers (cells with 
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> 6500 expressed genes or > 20% mitochondrial gene 
content) were excluded. Highly variable genes were iden-
tified, and batch effects were corrected with BBKNN. 
PCA, UMAP, and graph-based clustering were used for 
analysis.

Differential expression and enrichment analysis
Marker genes for clusters were identified using Seurat 
(v4.3.0.1), with a P value < 0.05 (Wilcoxon test) as the 
threshold. GO and pathway enrichment analysis was 
done with Metascape [12] and GSEA (clusterProfiler 
v4.8.2) [13].

Calculating gene set scores
The gene scores were computed using the AddModule-
ScoreUCell function from the UCell package [14], utiliz-
ing default parameters.

RNA velocity and pseudotime analysis
RNA velocity was calculated via Velocyto (v0.17.17), and 
velocity fields were projected onto UMAP embeddings. 
Pseudotime relationships were determined using Mono-
cle3 (v1.3.4) and PAGA.The Monocle3 package (v 1.3.4) 
[15] and PAGA [16]were used to determine the pseudo-
time developmental relationships of each cluster by using 
default parameters.

Inferring CNVs from scRNA-seq data
The single-cell CNVs were identified using the InferCNV 
R package (v1.8.1) [17, 18], which estimates chromo-
somal variants by comparing gene expression across loci 
in tumor cells to normal reference cells. Kmeans cluster-
ing was used to distinguish normal cells within tumor 
samples, with normal pituitary cells (Normal1, Normal8, 
Normal25) serving as the reference. InferCNV was run 
separately for each tumor sample using the raw count 
matrix, filtering out genes with an average read count 
below 0.1 in the reference cells.

Cell–cell communication analysis
We used CellChat (v 1.6.1) [19]based on the CellChatDB 
database to infer cell-cell interactions of selected ligand-
receptor pairs between tumor cells and tumor microen-
vironment cell subpopulations. Cellular communication 
networks were inferred by identifying differentially over-
expressed ligands and receptors in each cell population. 
The computeCommunProb function was utilized with 
parameters set to “truncatedMean” to compute the com-
munication probability.

Spatial transcriptomic data processing
Spatial transcriptomic data were aligned to their corre-
sponding HE images using SpaceRanger (v2.1.0). Genes 
with fewer than 10 counts and spots with fewer than 

10 genes were filtered out. Cell-type proportions were 
inferred using DestVI (v0.1.0) after training scLVM on 
scRNA-seq data, followed by stLVM training for spatial 
cell type extraction. Spatial patterns were analyzed using 
gamma space and Spatial PCs, and gene expression val-
ues were imputed from the trained scLVM with the get_
scale_for_ct() function.

Deconvolution of bulk RNA-seq data
The fraction of cell types in bulk RNA-seq samples was 
inferred using the CIBERSORTx online tool [20]. Single-
cell reference data were curated by randomly selecting 
100 cells per annotated cell type from our scRNA-seq 
dataset. Subsequently, we utilized the Create Signature 
Matrix function to create cell-type signature matrices, 
followed by the Impute Cell Fractions function to esti-
mate the relative cell fractions in each tumor sample, 
employing default parameters throughout the process.

Definition of TNF-α+ TAM gene signature
We performed differential gene expression analy-
sis on TNF-α+ TAM from both the bone-invasive and 
non-bone-invasive groups, identifying genes with a 
log2FC ≥ 0.25 as TNF-α+ TAM-specific. Cox multivari-
ate regression coefficients were employed to evaluate the 
prognostic impact of these genes. Ultimately, we iden-
tified four genes associated with high risk and with a P 
value < 0.05 as the TNF-α+ TAM gene signature.

Survival analysis
The Kaplan-Meyer curve and log-rank test (Mantel-Cox 
test) p-values were used to quantify the difference in pro-
gression-free survival (PFS) between high-expression and 
low-expression groups. Survival analysis was performed 
using the survival R package (v 3.5.5,  h t t  p s : /  / g i  t h  u b . c o m / 
t h e r n e a u / s u r v i v a l     ) .  

Statistics and reproducibility
Statistical analyses were performed using R v4.3.1 or 
GraphPad Prism 9. Spearman’s correlation tested cor-
relations, and the Wilcoxon rank sum test identified sig-
nificant differences between groups. FDR was calculated 
using the Benjamin–Hochberg method. Significance 
levels were denoted as *p < 0.05, **p < 0.01, ***p < 0.001. 
Detailed descriptions of tests are provided in the figures 
and legends.

RNA extraction and RT-qPCR
Total RNA was extracted from human PitNET tissues 
using the SteadyPure Quick RNA Extraction Kit and 
reverse transcribed with the biosharp Reverse Transcrip-
tion Kit. qRT-PCR was performed with SYBR Green 
assays on the ABI 7500 System, using GAPDH as the 
internal control. Expression levels were calculated via 

https://github.com/therneau/survival
https://github.com/therneau/survival
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Fig. 1 (See legend on next page.)
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the 2−∆∆CT method and normalized to GAPDH. All 
analyses were triplicated, with significance assessed by 
student’s t-tests (P < 0.05). Primer sequences are in Sup-
plementary Table S3.

Multiplexed immunohistochemistry
Multiplexed immunohistochemistry (mIHC) was per-
formed by sequentially staining 4-um-thick formalin-
fixed, paraffin-embedded whole tissue sections with 
standard primary antibodies and paired with TSA 
5-color kit (abs50013-100T, Absinbio, Shanghai). The pri-
mary antibodies used included anti-CX3CR1/ab184678, 
anti-TREM2/ab85851, anti-CD68/absin171440, anti-
TNF/ab6671, and anti-IL34/ab224734. After air-drying, 
images were captured with the Pannoramic MIDI II 
(3DHISTECH) and analyzed with Indica Halo software.

Results
The immune landscape of bone-invasive PitNETs
To delineate the immune landscape of PitNETs, we con-
ducted single-cell transcriptome sequencing on 10 BI 
PitNETs and 5 Non-BI PitNETs (Fig.  1A). After quality 
control, 87,287 cells were included for further analysis, 
comprising 65,171 cells from BI samples and 22,116 cells 
from Non-BI samples. On average, these cells had 9,334 
unique molecular identifiers (UMIs) and 2,799 expressed 
genes (Figure S1A). The 15 samples were categorized into 
four pathological types based on transcription factors 
(POU1F1, TBX19, and NR5A1) and hormone-secreting 
genes (POMC, GH1, GH2, TSHB, PRL, FSHB, and LHB). 
These types were named as Gonadotroph tumor, Pluri-
hormonal tumor, Thyrotroph tumor, and Corticotroph 
tumor. Though unsupervised clustering, we identified 
11 distinct cell types: B cells (marked by IGHM, CD79A, 
MS4A1), tumor_ Plurihormonal1 (POU1F1, PRL, GH1), 
tumor_ Corticotroph (TBX19, AR), endothelial cells 
(CD34, CDH5, ADGRL4), fibroblasts (DCN, MYL9, 
ACTA2), myeloid cells (CD14, CD68, FCGR3A), neural 
progenitor cells (CDKN3, CENPF), tumor_ Plurihor-
monal2 (FSHB, LHB, CHGA), plasma cells (CD27, SDC1, 
MZB1), stem cells (SOX2, SOX9, FABP7), and T cells 
(CD3D, CD3E, NKG7) (Fig.  1B, C). Previously defined 
marker genes consistently displayed distinct expression 
patterns unique to each corresponding subtype (Fig. 1D). 

Further analysis revealed that each cell type was derived 
from all 15 samples (Figure S1 B and C), and the cellu-
lar composition was generally consistent between BI 
and Non-BI samples, without notable donor-specific 
subgroups or batch effects. To assess the relationship 
between bone invasion and the proportions of different 
cell types, we compared the cell proportions from the BI 
and Non-BI groups within each cell type (Fig. 1E). Most 
cell types exhibited the highest proportion of cells in the 
BI group, which could be partially attributed to the rela-
tively larger sample size. Interestingly, the Non-BI group 
showed a higher proportion of several cell types, includ-
ing endothelial cells, fibroblasts, and plasma cells, which 
indicates that these cell types may play an important role 
in bone invasion. To further investigate the association 
between bone invasion and pathological classification, we 
analyzed the pathological origin of each cell type. Differ-
ent types of tumor cells originate solely from their cor-
responding pathological types, whereas immune cells, 
fibroblasts, and endothelial cells originate from all patho-
logical types (Fig. 1F). These findings highlight significant 
heterogeneity among tumor cells, while the non-tumor 
cells within the tumor microenvironments of different 
pathological classifications exhibit relatively less hetero-
geneity. Comparing the relative abundance of different 
cells, we found that tumor cells constituted the major-
ity, followed by myeloid cells, T cells, fibroblasts, and B 
cells (Fig.  1G). To determine the presence of gene copy 
number variations in PitNETs, we performed inferCNV 
analysis, which accurately distinguished between tumor 
and non-tumor cells. The analysis revealed significant 
copy number variations in PitNETs tumor cells, whereas 
no variations were observed in non-tumor cells, indicat-
ing that non-tumor cells, primarily immune cells, are in a 
normal functional state (Figure S1 D and 1E).

Two distinct states of tumor associated macrophages 
(TAMs) in PitNETs
Next, to investigate the role of various myeloid cells in 
bone invasion, we isolated 10,346 myeloid cells for in-
depth analysis. These cells were categorized based on 
distinct expression patterns of various cellular marker 
genes, resulting in the identification of eight myeloid 
subpopulations: CD14+ monocytes, CD16+ monocytes, 

(See figure on previous page.)
Fig. 1 Single-cell atlas of Bone Invasive and Non-Bone Invasive PitNET. A Graphic overview of the study design. Tumor tissues derived from patients with 
Bone Invasive (BI) and Non-Bone Invasive (Non-BI) PitNETs were converted into single-cell suspensions. Unsorted cells were employed for single-cell 
RNA sequencing (scRNA-seq) using the 10XGenomics platform. Additionally, spatial transcriptomics data were acquired from tumor slides using the 10X 
Genomics Visium technology. Analysis revealed the presence of TNF-α+ macrophages in invasive bone PitNETs, implicating them in bone destruction. 
This finding was validated through spatial transcriptomics and multiple immunofluorescence staining. B Uniform manifold approximation and projection 
(UMAP) of all 87,287 cells from 10 BI (n = 65,171 cells) and 5 Non-BI patients (n = 22,116 cells), colored by assigned cell type, Bone Invasiveness and patho-
logical condition. C Dot plot depicting the average expression of cell-type-specific markers in each cell cluster. The dot size represents the proportion of 
cells expressing each marker gene within each cluster. D UMAP plots showing the expression levels of selected marker genes. E, F, G Bar plots illustrating 
the proportion of each cell type across Bone Invasive (left panel) states and pathological conditions (middle panel), along with the total cell number for 
each cell type (right panel)
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Fig. 2 (See legend on next page.)
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macrophages, mast cells, CLEC4C+ plasmacytoid den-
dritic cells (pDCs), CD1C+ conventional dendritic cells 
(cDCs), neutrophils, and cycling macrophages (Supple-
mentary Figure S2 A, B). Upon comparing the propor-
tions of various cell types between the BI and Non-BI 
groups and categorizing all cells based on sample pathol-
ogy, no significant differences were found between the 
groups (Supplementary Figure S2 C, D). Focusing on the 
most abundant cell types, monocytes and macrophages, 
which comprised 8,560 cells, further analysis delineated 
eight distinct cellular subtypes (Fig. 2A, B). Despite uti-
lizing established molecular signatures for M1 and M2 
macrophages, angiogenesis, and phagocytosis, these sig-
natures proved insufficient in accurately discriminating 
between M1 and M2 macrophage phenotypes (Supple-
mentary Figure S2E). Notably, macrophages were mainly 
divided into four subpopulations. Two of these subpopu-
lations were characterized by high expression of CX3CR1 
and TREM2, which we designated as CX3CR1+TREM2+ 
TAM1 and CX3CR1+TREM2+ TAM2. Another subpop-
ulation was characterized by high expression of CD209 
and CD163, designated as CD209+CD163+ TAM1 and 
CD209+CD163+ TAM2 (Fig.  2A, B). The proportions 
of CX3CR1+TREM2+ TAM1 and CX3CR1+TREM2+ 
TAM2 in the BI group were significantly higher than 
in the Non-BI group, suggesting a specific role in bone 
invasion (Fig. 2C). To investigate the differentiation ori-
gins of these four macrophage subpopulations, we con-
ducted a pseudotime trajectory analysis and found that 
the differentiation origins of CX3CR1+TREM2+ TAM1 
and CX3CR1+TREM2+ TAM2 are different (Fig.  2D). 
Therefore, we further used myeloid-derived suppres-
sor cell (MDSC) markers to verify their differentia-
tion origins and found that CX3CR1+TREM2+ TAM1 
highly expressed MDSC markers, suggesting that they 
may originate from circulating monocytes. In con-
trast, CX3CR1+TREM2+TAM2 showed significantly low 
expression of MDSC markers, indicating that it may 
originate from tissue-resident macrophages (Fig.  2E). 
Furthermore, we performed enrichment analysis of dif-
ferentially expressed genes to reveal the functional dif-
ferences between monocyte-derived macrophages (Mo) 
and tissue-resident macrophages (Rs) (Supplementary 
Table S3). We found that upregulated genes in Mo were 
primarily enriched in pathways related to myeloid cell 
differentiation and inflammatory responses, indicating 

that they are in a different functional state (Fig. 2F). Pre-
vious studies have shown that TNF-α and IL-1B act as 
key molecules when promoting bone invasion of PitNETs 
by stimulating osteoclast differentiation. To determine 
whether CX3CR1+TREM2+ TAM1 can promote bone 
invasion through these two key molecules, we exam-
ined the expression patterns of TNF and IL-1B. Our 
analysis revealed that CX3CR1+TREM2+ TAM1 dem-
onstrated markedly elevated expression levels of TNF 
and IL1B (Fig.  2G, H). Moreover, a comparative gene 
expression analysis between CX3CR1+TREM2+ Mo-
TAM1 and CX3CR1+TREM2+ Rs-TAM2 highlighted 
significantly enriched pathways associated with leuko-
cyte activation, inflammatory responses, TNF signaling, 
and osteoclast differentiation (Fig. 2I, J). Interestingly, by 
comparing the average expression levels of these differ-
ential genes, we found that the global expression levels 
in CX3CR1+TREM2+ Mo-TAM1 were higher than those 
in CX3CR1+TREM2+ Rs-TAM2 (Fig. 2I), suggesting that 
CX3CR1+TREM2+ Mo-TAM1 may be in a functionally 
active state. On the contrary, CX3CR1+TREM2+ TAM2 
is in a functionally quiescent state. This suggests a dis-
tinct functional orientation of the CX3CR1+TREM2+ 
Mo-TAM1 phenotype (Abbreviated as TNF-α+TAM.), 
particularly concerning immune modulation and bone 
metabolism, which is integral for understanding the 
underlying mechanisms in pathological conditions. The 
proportion of CD209+CD163+ TAMs in the BI and Non-
BI groups did not show a significant difference. However, 
they highly expressed AHR and VCAM1, suggesting their 
crucial roles in immune cell differentiation, cytokine 
expression, and cell adhesion processes (Figure S2 F). The 
differentially expressed genes between monocyte-derived 
and tissue-resident CD209+CD163+ TAMs were primar-
ily enriched in pathways related to lymphocyte prolifera-
tion regulation (Figure S2 G, H). This further indicates 
that the functions of CD209+CD163+ TAMs are likely 
associated with the regulation of lymphocyte prolif-
eration and differentiation, cytokine expression, and cell 
adhesion processes. In summary, we discovered a novel 
macrophage subset in the immune microenvironment 
of PitNETs, which we have named CX3CR1+TREM2+ 
TAM1(Abbreviated as TNF-α+TAM). This subset is sig-
nificantly enriched in the immune microenvironment of 
bone-invasive PitNETs and exhibits high expression of 
TNF-α and IL1B. The TNF-α+TAM may be functionally 

(See figure on previous page.)
Fig. 2 Two distinct states of tumor associated macrophages (TAMs) in PitNETs. A UMAP of 8,560 monocytes and macrophages colored by assigned cell 
type. B Dot plot depicting the average expression of cell-type-specific markers across cell clusters. The dot size indicates the proportion of cells express-
ing each marker gene within the cluster. C Bar plot displaying the proportion of each cell type across Bone Invasive states. D Inferred developmental 
trajectory of monocytes and macrophages using monocle3, with colors representing psedotime. E Violin plot showing the expression of myeloid-derived 
suppressor cells (MDSCs) signatures. F Bar plot depicting pathways enriched in genes that exhibit higher expression in monocyte-derived (Mo) macro-
phages compared to tissue-resident (Rs) macrophages. G UMAP plots showing the expression levels of selected marker genes in CX3CR1 + TREM2 + TAMs. 
H Density plot visualizing combined gene expression of CX3CR1 + TREM2 + Mo-TAMs markers. I, J Differentially expressed genes (left) and differentially 
activated pathways (right) between CX3CR1 + TREM2 + Mo-TAMs and CX3CR1 + TREM2 + Rs-TAMs
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related to lymphocyte activation, inflammatory response, 
TNF signaling pathway, and osteoclast differentiation, 
potentially playing a vital role in the bone invasion of 
PitNETs.

Presentation of TNF-α+TAM in PitNETs is associated with 
increased TNF-α expression
We next employed multiplex immunofluorescence stain-
ing targeting CX3CR1, TREM2, CD68, and TNF-α to 
confirm the presence of TNF-α+TAMs in the BI sam-
ple (Fig.  3A, Figure S3 A). Co-expression of CX3CR1, 
TREM2, and CD68 is observed with nearby TNF-α 
expression in some areas, indicating the presentation of 
TNF-α+ TAM (Figure S3 B); in other areas, co-expres-
sion of CX3CR1, TREM2, and CD68 is observed without 
nearby TNF-α expression, indicating the presentation 
of TNF-α− TAM (Figure S3 C). Given that our analysis 
revealed a higher prevalence of TNF-α+ TAMs in the BI 
group, we anticipate the BI group would also have higher 
TNF-α expression. To confirm this, we used quantitative 
PCR on tumor specimens, which showed elevated TNF-α 
mRNA levels in the BI group compared to Non-BI coun-
terparts (Fig.  3B). In addition, enzyme-linked immu-
nosorbent assay (ELISA) results showed higher TNF-α 
concentrations in the blood of patients with BI PitNETs 
relative to those with Non-BI PitNETs (Supplementary 
Figure S3D). To further validate the correlation between 
TNF-α+TAM presentation and TNF-α expression, we 
performed a deconvolution analysis that revealed a sig-
nificant positive correlation between the proportion 
of TNF-α+TAMs and TNF-α expression levels (Figure 
S3E). We next sought to examine the clinical relevance 
of TNF-α activation in PitNETs. By stratified patients 
into two subgroups based on TNF-α expression levels 
from a cohort of bulk-sequenced PitNETs, we found that 
patients with high expression of TNF-α experienced a 
shorter progression-free survival (PFS) (Fig.  3C). Lastly, 
to establish a prognostic evaluation system, we defined 
a gene signature specific to TNF-α+ TAM and compared 
the prognostic impact of differentially expressed genes 
between BI and Non-BI groups using a multivariable 
COX regression (Fig.  3D). Our results indicate that the 
signature gene was mainly highly expressed in the TNF-
α+ TAMs within the BI group (Fig. 3E), and the signature 
scores in the BI TNF-α+ TAMs were significantly higher 

than those in the Non-BI group (Fig.  3F, G). Survival 
analysis indicated a high TNF-α+ TAM signature is asso-
ciated with poor prognosis. These findings suggest that 
this signature could be utilized to predict the prognosis 
of PitNET patients, offering valuable insights for clinical 
practice. (Fig. 3H).

TNF-α+ TAMs promote osteoclast differentiation
To investigate the role of TNF-α+ TAMs in osteoclast dif-
ferentiation, we conducted a cellular interaction analysis 
in the BI group (Supplementary Table S5). Our finding 
revealed that TNF-α+ TAMs act as principal signal trans-
mitters, predominantly interacting with monocytes as 
receivers (Fig. 4, A, B). However, this interaction is mark-
edly weakened (Figure S4, A, B) in the Non-BI group. 
This implies that TNF-α+ TAMs of BI PitNETs may influ-
ence monocytes through specific output signals, thereby 
promoting bone invasion. Furthermore, TNF-α+ TAMs 
in BI tumors exhibited enhanced TNF and CCL signal-
ing output, with monocytes being the primary recipi-
ents of these signals (Fig. 4C; Figure S4C), indicating that 
TNF-α+ TAMs might affect monocytes through TNF-α. 
Previous studies have noted that TNF-α could promote 
monocyte differentiation to osteoclasts through NF-KB 
and MAPK signaling [2, 21, 22]. Additionally, the binding 
of CCL2 to CCR2 could enhance monocyte chemotaxis 
and migration and osteoclast formation [23]. In line with 
these findings, our receptor-ligand pair analysis identi-
fied the TNF-TNFRSFIA/B, CCL2-CCR2 as key com-
munication channels between TNF-α+ TAMs and CD14+ 
monocytes (Fig.  4, D). In the TNF signaling pathway 
network of the BI group, TNF-α+ TAMs were centrally 
positioned and closely communicated with monocytes 
(Fig. 4E), a phenomenon was not observed in the Non-BI 
group (Figure S4D). Notably, CD14+ monocytes signifi-
cantly overexpress receptor genes such as TNFRSF1A, 
TNFRSF1B, and CCR2, further confirming the interac-
tion between TNF-α+ TAMs and CD14+ monocytes (Fig-
ure S4 E). Following this, we conducted a comparative 
analysis of the expression levels of genes such as TNF, 
IL1B, and CCL2 between the BI and Non-BI groups. We 
found that TNF-α+ TAMs in the BI group exhibited sig-
nificantly higher expression of these genes. Meanwhile, 
PCR results indicated high expression of TNF and CCL2 
in tumor samples (Fig. 3B; Figure S4 F), confirming this 

(See figure on previous page.)
Fig. 3 Identification of TNFα+ TAMs in PitNETs. A Multiple immunofluorescence staining reveals the expression of CX3CR1 (green), TREM2 (pink), CD68 
(yellow), TNF-α (red), DAPI (blue), etc. in BI PitNET; TNF-α+ macrophages (CX3CR1+, TREM2+, CD68+, TNF-α+) and TNF-α− macrophages (CX3CR1−, TREM2−, 
CD68+, TNF-α−) are observed. B PCR analysis detected the relative expression levels of TNF in 6 cases of BI and 5 cases of Non-BI PitNETs, showing sig-
nificantly higher TNF expression in the BI group. C Kaplan-Meier plot displaying the Progression Free Survival in patients with PitNETs, stratified by TNF 
expression levels and bone invasion status at the first quartile cutoff point. D Multivariable Cox regression comparing the prognostic impact of differ-
entially expressed genes in TNFα+ TAMs. HR, hazard ratios, 95% confidence intervals, and P values are shown. E Violin plot showing the signature gene 
expression of TNFα+ TAMs, split by the Bone Invasive states. F, G UMAP plot and Violin plot reflecting the significant enrichment of TNFα+ TAMs gene 
signature in BI-CX3CR1 + TREM2 + Mo-TAM. H Kaplan-Meier plot displaying the Progression Free Survival in patients with PitNETs, stratified by TNFα+ TAMs 
gene signature expression levels
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effect at the genetic level (Fig.  4F). We also performed 
GSEA analysis on known NF-KappaB pathways associ-
ated with bone invasion [24]. Our analysis revealed a sig-
nificant upregulation of NF-KappaB transcription factor 
activity signaling pathways in CD14+ monocytes of the 
BI group compared to the Non-BI group (Fig. 4G). Most 
importantly, spatial transcriptome deconvolution showed 
that TNF-α + TAMs and CD14 + monocytes were both 
clustered around the bone (within the ellipse in Fig. 4H) 
and located in close proximity to each other (Fig.  4H), 
providing the possibility for cell-cell interactions. Finally, 
we analyzed the expression of genes related to the “Posi-
tive regulation of NF-KappaB transcription factor activ-
ity” pathway and found that CD14+ monocytes in the 
BI group were significantly overexpressed (Figure S4 
G), indicating activation of NF-KappaB. This finding 
confirms the association between CD14+ monocytes 
and osteoclast differentiation in the BI group. To verify 
the presence of osteoclasts in PitNET samples, we vali-
dated the osteoclast markers CTSK, ACP5, and MMP9 
in the spatial transcriptomics data, confirming the exis-
tence of osteoclasts (Figure S4 H). In summary, this study 
found that TNF-α+ TAMs in the BI group can promote 
the differentiation of CD14+ monocytes into osteoclasts 
through the secretion of TNF-α, CCL2, and IL1B, thereby 
leading to bone destruction in BI PitNETs.

Tumor-secreted IL34 induces high TNF expression in 
macrophages
Our subsequent investigation aimed to identify the 
potential regulator for TNF over-expression in TNF-α+ 
TAMs in the BI group. By comparing the communica-
tion probability between top-ranking ligands secreted by 
tumor cells and receptors on subclusters of monocytes 
and macrophages, we found that tumor cells predomi-
nately communicate with TNF-α+ TAMs via IL34-CSF1R 
in BI PitNETs (Fig. 5A). Meanwhile, we observed higher 
expression of IL34 in the BI group than in the Non-
BI group, evidenced at both gene expression level and 
protein expression levels (Fig.  5, B, C, D). However, 
no intergroup differences were observed in IL34 levels 
in the blood (Figure S5 A), indicating that IL34 secre-
tion by BI PitNETs is confined to the tumor microen-
vironment, where the excessively secreted IL-34 can 
act on TNF-α+ TAMs. In addition, it has been reported 
that production of TNF-α could be induced by ERK1/2 

signaling activation [25]. To explore this, we performed 
GSEA analysis on the differentially expressed genes 
between BI-TNF-α+ TAMs and Non-BI-TNF-α+ TAMs. 
The results showed a significant upregulation of ERK1/2 
signaling in BI-TNF-α+ TAMs (Fig.  5, E). Furthermore, 
genes involved in the positive regulation of ERK1 and 
ERK2 pathways were also significantly upregulated in 
BI-TNF-α+ TAMs. (Figure S5, B).

To further verify the relationship between IL34 and 
tumor cells, we localized tumor subgroups in the spatial 
transcriptome and found that the spatial location of the 
tumor with high IL34 expression was close to the TNF-α+ 
TAMs with high TNF and CCL2 expression (Fig. 5F, G; 
Figure S5 C, D). Additionally, deconvolution analysis of 
the BI group indicated a positive correlation between the 
predicted proportion of tumor cells and IL34 expression 
levels (Figure S5, E). These results support the hypothesis 
that tumor cells enhance TNF-α secretion from TNF-α+ 
TAMs through IL34. To validate this hypothesis, we per-
formed multiplex immunofluorescence staining in tumor 
specimens and confirmed the proximal co-localization 
of IL34-positive tumor cells and TNF-α+ TAMs (Fig.  5, 
H). Finally, to explore the clinical significance of elevated 
IL34 and TNF-α, survival analysis further indicated that 
high expression of TNF and/or IL34 is associated with 
poor prognosis (Fig. 5, I).

Landscape of T cells and fibroblasts in PitNETs
To determine the potential association of T cells infil-
tration and bone invasion in PitNETs, we re-clustered a 
total of 5,090 T cells into various subgroups, including 
CD4 naive, CD4 effector memory (EM), CD4 cytotoxic, 
TH17, CD8 EM, CD56 dim natural killer (NK), CD56 
bright NK, and proliferative NK cells (Figure S6 A). The 
expression of cell-type-specific markers in each cell clus-
ter is detailed in Figure S6 B and C. In the BI group, there 
was an increased proportion of CD4 naive and TH17 
cells, accompanied by a decrease in CD56 dim NK cells, 
as depicted in Figure S6 D. Notably, the elevated TNF-α 
expression in TH17 cells compared to other T cell subsets 
suggests a potential role of TH17 cells in bone invasion. 
However, no significant difference in TNF-α expression 
between the BI and Non-BI groups was observed. (Figure 
S6 E). Furthermore, differential gene expression analysis 
between TH17 cells and other T cell types highlighted 
an enrichment in immune-related pathways, including 

(See figure on previous page.)
Fig. 4 TNFα+ TAMs promote osteoclast differentiation. A Scatterplot showing the interaction strength of outgoing and incoming secretory signals in BI-
PitNETs. B Heatmap of interaction strengths between different cell populations in BI-PitNETs. The top bar plot indicates the sum of incoming signals, and 
the right bar plot indicates the sum of outgoing signals. C Heatmap showing the relative strength of outgoing signaling pathways in BI-PitNETs. The red 
color indicates signaling pathways strengthened in BI compared to Non-BI. D Circos plots of the TNF signaling pathway network in BI-PitNETs. E Dot plot 
showing communication probability between top-ranking ligands expressed by TNFα+ TAMs and receptors on monocyte cells. F Violin plot showing the 
expression of top-ranking ligands in TNFα+ TAMs. G GSEA of differentially expressed genes ranked by log2FC between BI-CD14 + monocytes and Non-BI-
CD14 + monocytes. NES, normalized enrichment score. H Spatial feature plots showing co-localization of TNFα+ TAMs (left) and CD14 + monocytes (right) 
in spatial transcriptomic deconvolution analyses. The bone-containing area is within the red elliptical region
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Cytokine Signaling in the Immune System and the Posi-
tive Regulation of Osteoclast Differentiation (Figure S6 
F). Given that TH17 cells can promote bone resorption 
in periodontitis [26], our study also found that TH17 
cells highly express TNF-α, and the differential genes 
between TH17 and other T cells are enriched in Positive 
Regulation of Osteoclast Differentiation, indicating that 
our findings are consistent with the existing literature. 
Additionally, the proliferation of TH17 cells is known 
to be stimulated by IL2327, and we observed high IL23R 
expression in our TH17 cells (Figure S6 C), suggesting 
they are actively proliferating and potentially in a func-
tionally active state. However, no significant difference in 
the proportion of TH17 cells or the TNF-α secretion level 
between the BI and Non-BI groups was noted, suggesting 
that TH17 cells may be responsible for bone resorption 
under normal physiological conditions. RNA velocity 
analysis indicated that the differentiation of TH17 cells is 
likely derived from CD4 naive cells (Figure S6 G H).

Fibroblasts also play an important role in tumor pro-
liferation, and invasion. In order to elucidate their role 
in bone invasion of PitNETs, we conducted a re-cluster-
ing analysis of fibroblasts. 545 fibroblasts were assessed 
(Figure S7 A and B) and classified into smooth muscle 
cells, pericytes, and cancer-associated fibroblasts (CAFs) 
based on cell marker gene expression (Figure S7 C). The 
BI group demonstrated an increased prevalence of CAFs 
and smooth muscle cells, with a concurrent decrease in 
pericyte abundance (Figure S7 D). The higher proportion 
of CAF in the BI group suggested its potential involve-
ment in bone invasion. To study the differentiation and 
functional state of CAF, we performed pseudotime 
analysis, which revealed that CAF is in the late stage of 
differentiation. This high differentiation state indicates 
that CAF is functionally active (Figure S7 E). Further 
enrichment analysis of differential genes between CAF 
and other fibroblasts showed significant enrichment in 
pathways related to extracellular matrix formation and 
angiogenesis (Figure S7 F). However, there was no signifi-
cant difference in the expression levels of these pathway-
related genes between the BI and Non-BI groups (Figure 
S7 G, H). These results suggest that the immune micro-
environment of BI PitNETs contains higher levels of CAF, 

which may contribute to bone invasion by promoting 
extracellular matrix formation and angiogenesis.

Discussion
Bone-invasive PitNETs pose significant clinical chal-
lenges for neurosurgeons due to limited effective 
treatments. Evidence shows that the immune microen-
vironment plays a pivotal role in tumor development, 
including proliferation, invasion, and metastasis [4, 
28, 29]. Targeting the immune microenvironment has 
emerged as a hot topic in cancer therapy and has shown 
promising initial results [30].

In this study, we uncovered the characteris-
tics of macrophages in PitNETs and identified 
CX3CR1 + TREM2 + TAM1, which express high levels of 
TNF-α and IL1B. These cytokines are known to facilitate 
bone invasion by promoting the differentiation of mono-
cytes into osteoclasts [2, 22]. Interestingly, the propor-
tion of CX3CR1+TREM2+ TAM1 (TNF-α+ TAMs) was 
higher in the BI group than in the Non-BI group. Further 
analysis revealed that tumor cells in the BI group secrete 
excessive IL34, which, through the IL34-CSF1R interac-
tion, activates the ERK1/2 signaling pathway in TNF-α+ 
TAMs, subsequently promoting TNF-α secretion. Cell-
cell communication analysis and receptor-ligand pair 
analysis suggested that TNF-α+ TAMs may act on CD14+ 
monocytes through the TNF-TNFRSF1A/B and CCL2-
CCR2 pathways, activating the NF-KB signaling pathway 
and promoting osteoclasts differentiation.

In summary, we identified a novel macrophage sub-
set (TNF-α+ TAM) in PitNETs, derived from circulat-
ing monocytes with increased infiltration in BI PitNETs. 
These macrophages, characterized by CX3CR1 and 
TREM2 expression, significantly upregulate TNF-α and 
IL-1B, exacerbating bone invasion. Overall, this study 
highlights the crucial roles of cell-cell interactions in the 
process of bone invasion in PitNETs. By targeting key 
molecules on our identified axis of cell communications, 
pharmacologic interventions may exist to interrupt cel-
lular interactions and cytokine secretion, thereby alle-
viating bone destruction. Thus, these findings offer new 
insights into the treatment strategy for bone-destructive 
PitNETs.

(See figure on previous page.)
Fig. 5 Tumor-derived IL34 promotes high TNF expression in macrophages. A Dot plot showing communication probability between top-ranking ligands 
expressed by tumor cells and receptors on subclusters of monocytes and macrophages. B UMAP and Violin plots revealing significantly high expression of 
IL34 in BI-PitNETs. ***, P value < 0.001. C PCR detected the relative expression levels of IL34 in 5 cases of BI and 5 cases of Non-BI PitNETs, with significantly 
higher IL-34 expression in the BI group. The H-scores for the BI and Non-BI groups are 208.05 ± 17.82 and 24.63 ± 5.58, respectively (p < 0.001). D Immuno-
histochemical staining was used to detect the relative expression levels of IL34 in 8 cases of BI and 8 cases of Non-BI PitNETs, showing significantly higher 
IL-34 expression in the BI group. E GSEA of differentially expressed genes ranked by log2FC between BI-TNFα+ TAMs and Non-BI-TNFα + TAMs. NES, nor-
malized enrichment score. F Spatial feature plot demonstrating subcluster distribution following Kmeans clustering for spatially weighted PCA of tumor 
cells. G Spatial feature plot showing imputed expression values of TNF, CCL2 in TNFα+ TAMs and, IL34 in tumor cells, as predicted by the trained single-cell 
data applied to spatial transcriptome space. H Immunofluorescence staining was performed to detect the expression of IL34 and TNF-α in BI PitNETs. IL34 
(green) was widely expressed in the tumor tissue, while TNF-α (red) was mainly expressed around macrophages (yellow). I Kaplan-Meier plot displaying 
the Progression Free Survival in patients with PitNETs, stratified by expression levels of TNF and/or IL34 at the first quartile cutoff point
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Colony-stimulating factor 1 receptor (CSF1R) is a con-
served tyrosine kinase transmembrane receptor central 
to CSF1R signaling transduction [31, 32]. Mutations in 
CSF1R can impair osteoclast function, resulting in osteo-
petrosis [33, 34], which is consistent with our research 
findings. Additionally, CSF1R plays a significant role in 
the chemotaxis and accumulation of tumor-associated 
macrophages [35]. Therefore, blocking IL34-CSF1R sig-
naling holds promise for improving bone invasion in Pit-
NETs. CX3CR1, a cell surface protein primarily expressed 
in monocytes and macrophages, varies expression among 
different cell subtypes [36, 37]. The CX3CR1-CX3CL1 
axis is critical in the immune microenvironment, as it has 
been shown to lead to infiltration of NK cells, monocytes, 
T cells into tumors [38], thereby altering the immune 
milieu and modulating immune responses [39, 40]. Stud-
ies have found that CX3CR1-deficient mice exhibit a 
reduction in microglia numbers during postnatal devel-
opment, suggesting CX3CL1-CX3CR1 signaling may 
serve as a chemoattractant to facilitate the microglia 
aggregation in the brain [41].In breast cancer research, 
scholars injected MDA-231 cells into the bloodstream 
of CX3CL1 knockout mice, resulting in a 70% reduc-
tion in bone metastatic foci compared to wild-type mice. 
TREM2, a member of the triggering receptor expressed 
on myeloid cells family [42], is integral to the regulation 
of the immune microenvironment. In a study involving 
adipose tissue, researchers found that TREM2 drives the 
reshaping of the adipose tissue immune microenviron-
ment, recruiting circulating monocytes to the vicinity of 
adipocytes, where they differentiate into TREM2+ lipid-
associated macrophages. The absence of TREM2 elimi-
nates the aggregation of macrophages around adipocytes 
[43]. Additionally, studies have demonstrated that in the 
alveolar bone of individuals with chronic periodontitis, 
there is a significant upregulation of TREM2 expression. 
In a mouse model of periodontitis, knockout of TREM2 
results in reduced bone invasion [44]. The studies above 
highlight the dual role of CX3CR1 and TREM2 expres-
sion: they not only induce circulating monocytes to TME 
but also elicit invasive behavior of tumors. Targeting 
the IL34-CSF1R axis, the CX3CR1-CX3CL1 axis, and 
TREM2 may help reduce bone invasion in PitNETs. Fur-
ther research is needed to validate this in the future.

Conclusion
In this study, we elucidate the changes in the tumor 
microenvironment during bone invasion and iden-
tify the critical role of newly defined TNF-α + TAMs 
in promoting bone invasion of PitNETs. We also define 
the gene signature of TNF-α + TAMs, which can effec-
tively predict the prognosis of BI PitNETs patients. This 
study lays a foundation for developing new molecu-
lar markers or therapeutic agents targeting BI PitNETs. 

More importantly, our findings provide new insights for 
research and treatment of other bone-invasive diseases.
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