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Introduction
RNA splicing is an essential process in the expression 
of most human genes, which involves removing introns 
from precursor messenger RNA (pre-mRNA) and joining 
exons to produce mature mRNA [1]. Most multi-exonic 
human genes undergo alternative splicing (AS), generat-
ing distinct mature mRNAs from a single primary tran-
script and expanding the protein-coding repertoire [2, 
3]. Most tumors exhibit extensive splicing abnormali-
ties, including abnormal retention of introns that are 
usually excised, inappropriate expression of isoforms, 
and either inactivation of tumor suppressors or promo-
tion of oncogene expression [4–6]. Therefore, identify-
ing cancer-specific subtypes from aberrant splicing offers 
new opportunities for developing cancer therapeutics. 
Currently, small molecule inhibitors targeting oncogenic 
splicing factors or splicing machinery elements are being 
developed for anticancer therapy [7]. Additionally, indi-
vidualized splice-switching antisense oligonucleotide 
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Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative 
splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized 
as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes 
from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, 
each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are 
in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the 
contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging 
RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching 
antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings 
into clinical practice.
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(ASO) therapy provides a novel and personalized 
approach to cancer treatment [8].

This review focuses on the basic mechanisms of RNA 
splicing and its dysregulation in cancer. And it discusses 
current and emerging strategies to target RNA splicing, 
including the pharmacological regulation of RNA splicing 
and advances in ASO-targeted RNA splicing in cancer 
therapy. First, the molecular mechanisms of pre-mRNA 
splicing are introduced, followed by a discussion on the 
complex interactions between regulators that deter-
mine the splicing sites of pre-mRNA. Next, we describe 
how the dysregulation of splicing in cancer leads to the 
expression of aberrant mRNA isoforms associated with 
“cancer hallmarks”, which promote tumor progression. 
Finally, the review discusses the future of pre-mRNA 
processing research in anticancer drug discovery, empha-
sizing the potential of splicing-derived neoantigens to 
enhance immunotherapy and the development of drugs 
that target these splicing.

Basic mechanisms of RNA splicing and regulation
RNA splicing is regulated by the spliceosome, a substan-
tial ribonucleoprotein complex composed of five small 
nuclear RNAs (snRNAs: U1, U2, U4, U5, and U6) and 
approximately 200 associated proteins [9]. In the pro-
cess of splicing, all sorts of spliceosomes (including the 
E complex, A complex, B complex, B* complex, etc.) play 
an important role (Fig.  1A). The spliceosome identifies 
essential regulatory sequences in pre-mRNA, such as the 
5′ splice donor site (5′ss) and 3′ splice acceptor site (3′ss), 
which define intron-exon boundaries. It also recognizes 
the branch point site (BPS) and the polypyrimidine 
tract (PPT) located between the BPS and the 3′ss [10]. 
The U1 snRNA molecule inside the U1 snRNP complex 
forms a base complementary pairing with the GU dinu-
cleotide located at the 5’ end of the pre-mRNA. Splicing 
factor 1 (SF1) identifies and attaches to BPS, while U2 
small nuclear RNA auxiliary factor 1 and 2 (U2AF1 and 
U2AF2) attach to the conserved AG dinucleotide at the 
3’ end of the intron and PPT, respectively. The U2AF het-
erodimer facilitates the substitution of SF1 with U2 small 
ribonucleoprotein (U2 snRNP) at the BPS after binding 
to the 3’ ss and PPT. The splicing factor 3B (SF3B), which 
is a protein subcomplex in the U2 snRNP, interacts with 
the nucleotide sequence that surrounds the adenosine 
in the BPS. U1 and U2 snRNP interactions bring the 5′ 
and 3′ splice sites into proximity. The secure attach-
ment of U2 snRNP to pre-mRNA initiates the recruiting 
of tri-snRNP complexes comprising the U4, U5, and U6 
complexes. Upon the presence of all five small nuclear 
ribonucleoproteins (snRNPs), the spliceosome experi-
ences a conformational rearrangement, releasing U1 and 
U4. This sequence alteration initiates the stimulation of 
two transesterification reaction stages, leading to the 

splitting of the 5’ end and facilitating the joining of the 3’ 
end with the exon. Ultimately, introns are excised to pro-
duce mRNA, and snRNPs are liberated from the spliceo-
some complex and utilized in subsequent splicing cycles 
[7, 11–13](Fig. 1A).

Additionally, the interplay between cis-regulatory ele-
ments on the pre-mRNA and trans-acting splicing factor 
proteins modulates splice site recognition, influencing 
splicing accuracy (See Fig.  1B) [14]. Cis-regulatory ele-
ments include exonic splicing enhancers (ESEs), intronic 
splicing enhancers (ISEs), exonic splicing silencers 
(ESSs), and intronic splicing silencers (ISSs). Cis-regu-
latory elements encompass exonic and intronic splicing 
enhancers (ESEs and ISE) as well as exonic and intronic 
splicing silencers (ESS and ISS). These elements regulate 
exon inclusion in the final mRNA molecule. Serine/argi-
nine-rich (SR) proteins and heterogeneous nuclear ribo-
nucleoproteins (hnRNPs) are two prominent families of 
splicing factors that control alternative splicing by bind-
ing to regulatory regions in pre-mRNA.SR proteins facili-
tate the formation of spliceosomes and exon inclusion by 
recognizing ESEs [15].In contrast to SR proteins, hnRNPs 
can bind to ISSs and prevent the inclusion of exons [16]. 
Nevertheless, the diverse trans-acting factors that trigger 
the inclusion or exclusion of exons can have contrast-
ing impacts based on the particular location where they 
bind [17–19]. The splice site selection process and the 
subsequent optimization of splicing can be influenced by 
the antagonistic or cooperative actions of these splicing 
factors.

AS is a process that generates multiple transcript vari-
ants from a single gene. This process expands protein 
diversity and phenotypic complexity [20]. Exons that 
are consistently present in the mRNA are referred to as 
constitutive exons, while exons that may occasionally be 
alternatively included in the mature mRNA are known as 
cassette exons. There exist seven fundamental types of AS 
events that can generate transcript variants (see Fig. 1C). 
Exon skipping is the predominant form of alternative 
splicing in higher eukaryotes, followed by an alternative 
5’s or 3’s event. Retaining introns in mature mRNA is a 
more prevalent occurrence in plants and fungi. A Mutu-
ally exclusive exon refers to a pair of alternative exons 
where only one exon is included while the other exon is 
excluded. Ultimately, promoters or alternative polyade-
nylation sites on the first and last exons yield alternatively 
spliced transcripts [21, 22]. AS splicing regulates various 
cellular processes, and its dysregulation can drive tumor 
development or treatment resistance.

Aberrant RNA splicing in cancer
Aberrant RNA splicing occurs in nearly all cancer types, 
driven by genomic changes and disruptions in splicing 
factors [5, 6]. Tumors exhibit up to 30% more alternative 



Page 3 of 22Lv et al. Journal of Experimental & Clinical Cancer Research           (2025) 44:32 

Fig. 1  The regulation mechanism and mode of RNA splicing. (A) Pre-mRNA includes 5’ splice sites (5’ ss), 3’ splice sites (3’ ss), branch point sites (BPS), and 
(BPS), and polypyrimidine channels (PPT). U1 snRNP recognized 5’ss, and SF1 bound BPS, U2AF2 and U2AF1, PPT, and 3’ss to form the E complex, respec-
tively. U2 snRNP replaces SF1 and binds to BPS to form an A complex, which subsequently recruits U4, U5, and U6 triple snRNP complexes. The B complex 
is rearranged to form catalytically activated complex B, which is followed by two transesterification reactions catalyzing the eventual formation of mature 
mRNA and the intron Lariat. (B) Cis-regulatory elements in pre-mRNA interact with splicing factors to regulate the splicing process. SR proteins act as 
splicing activators and promote splicing by binding to ESEs and ISEs. HnRNPs act as repressors and inhibit binding to splice sites by interacting with ESSs 
and ISSs. (C) RNA splicing is composed of constitutive splicing and AS. AS including exon skipping, retention intron, alternative 5’ splicing, alternative 3’ 
splicing, mutually exclusive exon, alternative promoters, and alternative polyadenylation. Exons are represented by boxes, and introns by lines. Promoters 
are indicated by arrows, and polyadenylation sites are indicated by AAAA. This figure was drawn by Biorender
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splicing events than normal tissues, generating cancer-
specific splice isoforms [23]. These events can produce 
neoantigens that affect immune responses and hold 
potential for immunotherapy.

Mutations in splice sites, splicing factors, and spliceo-
some components (e.g., SF3B1, U2AF1, and SRSF2) dis-
rupt splicing in cancer [4, 24–29]. Splice-site-creating 
mutations (SCM) in tumors are highly immunogenic, 
supporting their potential role in immunotherapy [30]. 
Mutations in U1 snRNA and synonymous mutations in 
key genes (e.g., TP53) also contribute to aberrant splic-
ing, altering gene expression and function [31].

Aberrant expression of SFs further dysregulates AS in 
tumors. For example, SRSF1 is upregulated in lung, pan-
creatic, brain, and breast cancers, promoting isoform 
switching that drives tumor growth [32–35]. SRSF3, 
overexpressed in most solid tumors, enhances prolif-
eration in breast, cervical, and nasopharyngeal cancers 
[36–39]. HnRNPA1, an hnRNP family member, regulate 
glycolysis by producing the PKM2 isoform, promoting 
tumor growth in multiple cancers. hnRNPA1 can also 
suppress tumor progression, inhibiting metastasis in 
gastric cancer [40–45]. The expression of these splicing 

factors plays a critical role in cancer progression, provid-
ing potential therapeutic targets.

Aberrant splicing generates cancer-specific RNA iso-
forms that drive hallmarks of cancer, including prolifera-
tion, metastasis, angiogenesis, immune evasion, and drug 
resistance (Fig. 2) [5]. Most of these cancer-associated AS 
events are regulated by different SFs (Table 1). For exam-
ple, HNRNPK promotes SPIN1 exon 4 inclusion to regu-
late proliferation in oral cancer, while alternative isoforms 
of AXL and MBD2 enhance metastasis in liver and breast 
cancers [46–48]. Splicing of VEGF isoforms contributes 
to angiogenesis in ovarian and breast cancers [49, 50]. AS 
also affects cell death, with isoforms like MCL-1  S and 
BCL-xS promoting apoptosis [51, 52]. Additionally, splic-
ing alters immune responses, as shown by CD19 exon 2 
skipping, which impairs CAR-T therapy in leukemia [53]. 
Drug resistance is driven by isoforms like FGFR3-S and 
RAD51, which confer cancer therapy resistance [54, 55]. 
Understanding these splicing events offers opportunities 
for novel cancer treatments.

In addition to their role in RNA splicing, SFs have 
increasingly been recognized for their non-canonical 
functions that contribute to cancer development and 
progression. These factors influence various cellular 

Fig. 2  Tumor-associated splicing activates cancer hallmarks. Aberrant splicing can generate cancer-associated RNA isoforms, which activate cancer hall-
marks. Including sustaining cell proliferation, tumor invasion and metastasis, inducing angiogenesis, resisting cell death, deregulating cell metabolism, 
promoting inflammation, altering the immune response, and resistance to drugs. This figure was drawn by Figdraw
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processes, such as transcriptional regulation, chroma-
tin remodeling, DNA repair, and RNA metabolism. For 
instance, some SFs interact with transcription factors 
and chromatin remodeling complexes to modulate gene 
expression [56, 57]. Similarly, some SFs are involved in 
DNA damage prevention and repair [58], for example, 
hnRNPK acts as a co-factor of p53, facilitating the repair 
of DNA double-strand breaks, thus promoting cancer 
cell survival and maintaining genomic integrity [59]. 
Additionally, SFs assist in microRNA processing, mRNA 
stabilization, and degradation [60–62]. These non-canon-
ical functions offer new insights into cancer pathogen-
esis and present potential therapeutic targets for cancer 
treatment.

Pharmacologic RNA splicing modulation
Given the critical role of aberrant RNA splicing in can-
cer progression, targeting RNA splicing has emerged as 
a promising therapeutic for cancer. Small molecule drugs 
targeting RNA splicing are discussed, including those 
acting on the core spliceosome or enzymes modifying 

splicing factors (Fig. 3). The roles of these drugs in cancer 
therapy, from broad-spectrum RNA splicing regulation 
to specific isoform level changes, and their clinical pros-
pects are also discussed.

Directly target the core spliceosome
The spliceosome performs pre-mRNA splicing with 
exceptional accuracy. As above discussed, the associa-
tion between cancer and the dysregulation of splicing is 
significant. Consequently, the identification of small mol-
ecules that specifically target spliceosome components 
presents a promising therapeutic prospect.

SF3B complex inhibitor
The SF3B complex is a critical spliceosome component 
for BPS and 3’ss selection, (see Fig.  1A), and restrict-
ing its function disrupts splicing at an early stage of 
spliceosome assembly. The SF3B complex includes the 
splicing factors SF3Bs family and PHD finger protein 
5 A (PHF5A). A variety of natural products and deriva-
tive molecules targeting the SF3B complex have been 

Table 1  SFs regulate AS of target genes to affect cancer hallmarks
Hallmarks SFs Target Pre-mRNA Tumor type Model Refs
Sustain
cell proliferation

HNRNPK SPIN1 Oral squamous cell carcinoma Cell line [46]
PUF60 CDC25 Lung cancer Cell line [63]
SF3B4 RAD52 Ovarian cancer Cell line [64]
- CERS2 Breast cancer Cell line [65]

Invasion and metastasis PTBP1 AXL Liver cancer Cell line, xenograft model [47]
SRSF2 MBD2 Breast Cancer Metastasis, orthotopic models [48]
SRSF11 HSPA12A Colorectal cancer Xenograft model [66]
PTBP1 SMARCA Colorectal cancer Cell line, xenograft model [67]
RBFOX2 MPRIP Pancreatic cancer Xenograft model [68]

Inducing angiogenesis SRSF1 VEGF Ovarian cancer Xenograft models [49]
SRSF2 VEGFA

(VEGF)
Breast cancer Cell line [50]

Resist cell death SRSF1 MCL-1 Esophageal squamous cell carcinoma Cell line [51]
SRSF6 Fas Colon cancer Cell line [69]
- BCLX Glioblastoma cells Cell line [52]
SFPQ Caspase 9 Ovarian cancer Cell line [70]
RBFOX2 TFRC Endometrial cancer Cell line, Xenograft model [71]

Alter immune response SRSF10 IL1RAP Cervical cancer Cell lines,
Xenograft model

[72]

- PTIRI Colorectal cancer SW480 cells [73]
- IRF1 - Th1 cells [74]
- CD19 B-cell acute lymphoblastic leukaemia (B-ALL) - [53]

Promote inflammation - IL1RN Intrahepatic Cholangiocarcinoma Spontaneous mouse iCCA models [75]
Deregulate cell metabolism HnRNPA1 PKM Lung adenocarcinoma Xenograft models [76]

PTBP1 PKM, GLUT Hepatocellular carcinoma Cell line [77]
Drug resistance - FGFR3 Prostate Cancer Xenograft model [54]

SRSF6 PICALM Gastric cancer Tumor of PDX model [78]
YB1 RAD51 Colorectal cancer Xenograft model [55]
HnRNPC TP53INP2 Renal cell carcinoma Xenograft model [79]
SF3A2 MKRN1 Triple-negative breast cancer Cell lines, Xenograft model [80]
DHX38 RELL2 Pancreatic ductal adenocarcinoma Cell lines [81]
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identified and developed. For example, natural products 
such as FR901464 (Spliceostatin) [82], Pladienolides [83], 
GEX1A (Herboxidiene) [84], Thailanstatin A [85], and 
Jerantinine A [86] modulate RNA splicing and exhibit 
potent anticancer activity. Observing the anticancer 
properties of these natural products, synthetic analogues 
with improved chemical properties, such as E7107, H3B-
8800, Spliceostatin A, Sudemycins, and Meayamycin, 
have been developed.

Natural products targeting SF3B complex  FR901464, 
originally extracted from the bacteria, exhibits potent in 
vitro anticancer activity against mouse and human tumor 
cell lines [82]. It binds to spliceosome components SF3B1 
and PHF5A. Constantin Cretu and his colleagues used 
an FR901464 analogue to investigate how the U2 snRNP 
selects introns. They discovered that spliceostatin/Sudeo-
mycin disrupted prespliceosome assembly and splicing 
fidelity by covalently binding PHF5A [87]. Pladienolide, a 
12-membered macrolide from Streptomyces Mer-11107, 
interacts with the SF3B complex, hence impeding the pro-
cess of RNA splicing [83]. The R1074H mutation in the 
SF3B1 reduces pladienolide’s binding affinity to the SF3B 
complex [ [88]. A new study has documented the crystal 
structure of human SF3B when it is bound to Pladienolide 
B (PB). PB acts as a wedge in a hinge, locking SF3B in the 
open conformation. This regulates SF3B’s transition to the 
closed conformation and allows it to stably accommodate 
the BPS/U2 duplex. This study clarifies the underlying 
structure that governs the splicing regulatory effects of 
PB and similar compounds. It uncovers key interactions 
between SF3B and shared pharmacophores, providing 
a basis for structure-based drug design [89]. GEX1A, a 
microbial product and natural splicing modulator, inhib-

its tumor growth. It targets the SAP155 protein (SF3B1), a 
critical protein in precursor mRNA splicing [84].

Derivatives of the natural products targeting SF3B 
complex  Based on the consensus pharmacophore 
derived from PB and FR901464, researchers developed a 
series of small molecule analogues. For example, E7107, a 
semisynthetic derivative of the natural product PB, inhib-
its the assembly of spliceosomes by blocking U2 snRNP 
binding to pre-mRNA [90]. H3B-8800, an orally available 
small molecule with preferential cytotoxicity, was identi-
fied by Michael Seiler et al. through an iterative medicinal 
chemistry endeavor based on a PB scaffold. These mole-
cules potently compete with PB for binding to SF3B com-
plexes [91]. FR901464 derivatives include Spliceostatin A, 
Sudemycins, and Meayamycin. Spliceostatin A hinders 
the process of splicing and enhances the accumulation of 
pre-mRNA by attaching to SF3B [92]. Sudemycins induce 
splicing alterations similar to those of Spliceostatin A [93]. 
Meayamycin is a highly effective antiproliferative drug 
that is more than 100 times stronger than FR901464 in 
inhibiting the growth of human breast cancer MCF-7 cells 
[94, 95]. Despite structural diversity and physicochemical 
properties of these compounds, these compounds target 
the SF3B complex in U2 snRNP and exhibit anti-tumor 
effects. This convergence highlights the potential of spli-
ceosome-targeting drugs in anti-tumor therapy, encour-
aging further clinical exploration.

Anti-tumor mechanisms of SF3B complex inhibi-
tion  Altered splicing is emerging as a new cancer signa-
ture and a promising therapeutic target. Although splicing 
modulators elicit global effects, they specifically induce 
cancer cell death. This selectivity may arise that treatment 

Fig. 3  Small molecule drugs target RNA splicing strategies. Small-molecule drugs target RNA splicing. Inhibitors targeting the core spliceosome complex 
include inhibitors targeting Tri-snRNP, drugs directly targeting the core spliceosome complex SF3B, and inhibitors targeting U2AF2. Small-molecule drugs 
targeting the post-transcriptional modification of splicing factors include targeting ubiquitination, phosphorylation, and methylation. This figure was 
drawn by Biorender
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with SF3B-targeting splicing modulators primarily affects 
the splicing events of a subset of genes involved in regulat-
ing the cell cycle and apoptosis [96–98]. Rocco Sciarrillo 
demonstrated that SF3B1 is emerging as a new potential 
prognostic factor for diffuse malignant peritoneal meso-
thelioma (DMPM). An investigation of differential splic-
ing in cells treated with PB showed significant changes in 
the transcripts related to cell cycle, apoptosis, and other 
carcinogenic pathways [96]. Recently, Jacob P. Beard et al. 
synthesized Meayamycin D, which induces MCL-1 alter-
native splicing and exhibits anti-tumor specificity [99]. 
Emilia Alors-Perez et al. demonstrated that treatment 
with Pladienolide B in pancreatic ductal adenocarcinoma 
(PDAC) increased the expression of pro-apoptotic splice 
variants (BCL-XS, KRASa, Δ133TP53) and diminished 
tumor growth in zebrafish and mice [100]. In addition, 
SF3B-targeting splicing modulators also affect cancer 
characteristics such as proliferation, invasion, and stem-
ness. For example, PB inhibits tumor proliferation, migra-
tion, and colony formation in hepatocellular carcinoma 
cells [101]. Another study revealed that the application 
of Pladienolide B in prostate cancer (PCa) can reduce the 
invasiveness of PCa cells and the viability of primary PCa 
cells [102]. Pladienolide B could also inhibit colorectal 
cancer cell proliferation and migration and TEAD2 splic-
ing by targeting PH5FA [103]. GEX1A targets leukemic 
stem cells by inhibiting the production of FASTK mito-
chondrial isoforms, thereby repressing leukemia progres-
sion [104].

Overexpression or hyperactivation of MYC accelerates 
the synthesis of pre-mRNA, hence increasing the work-
load of the core spliceosome in its processing. Sudemycin 
D6 (SD6), an SF3B1 inhibitor, suppressed colony forma-
tion, induced MYC-dependent apoptosis, and inhibited 
tumor formation and metastasis in MYC-driven TNBC 
cells [105]. Another study linked splicing dysregulation to 
PCa progression and showed that E7107 efficiently sup-
pressed the development of MYC-driven murine PCa as 
well as preclinical castration-resistant PCa models in vivo 
[106]. Collectively, these data suggest that pharmacologic 
suppression of the spliceosome is synthetically lethal 
with MYC.

Recent studies have demonstrated that pharmacologic 
modulation of splicing targeting SF3B may be preferen-
tially lethal for cells bearing spliceosomal mutations in 
malignancies, compared to spliceosomal-wildtype can-
cers or normal cells. For example, H3B-8800 selectively 
kills epithelial and hematologic tumor cells with spliceo-
some mutations [91]. SF3B1 mutations can also mediate 
the sensitivity to H3B-8800 in chronic lymphocytic leuke-
mia [107]. Another study demonstrated that hematopoi-
etic cells with mutant U2AF1, including primary patient 
cells, are sensitive to sudemycin compounds [108]. Leu-
kemias with SRSF2 mutations are more susceptible to the 

spliceosome inhibitor E7107 than wildtype counterparts 
[109]. Together, these data suggest that pharmacologi-
cal inhibition of the spliceosome is synthetically lethal to 
malignancies carrying spliceosomal mutations.

E7107 and H3B-8800 underwent clinical trials but 
were subsequently terminated (refer to Table  2). E7107, 
a unique first-in-class molecule, was tested in a Phase 
I clinical trial where forty patients were enrolled. The 
inclusion criteria included patients with solid tumors 
refractory to standard therapies or those without avail-
able standard treatments. The most common side effects 
observed were gastrointestinal reactions. Following the 
cessation of the medication at a dosage of 4.0 mg/m2, one 
patient encountered temporary grade 4 visual impair-
ment [110]. In another Phase I trial, the most prevalent 
drug-related side events were nausea, vomiting, and diar-
rhea. Notably, two patients suffered from vision loss, 
resulting in the termination of this trial [111]. The most 
frequent treatment-related side effects seen in a Phase I 
trial of the oral SF3B1 modulator H3B-8800 in myeloid 
neoplasms were diarrhea, nausea, lethargy, and vomiting. 
Nevertheless, there were no observed responses that fully 
or partially matched the criteria set by the International 
Working Group with or without core spliceosome muta-
tions, however, nine patients experienced red blood cell 
transfusion independence [112]. This phenomenon may 
indicate that the dosage required to achieve cell killing 
exceeds the levels achieved in human subjects.

Targeting U2AF2 inhibitor
U2AF homology motifs (UHMs) and U2AF ligand motifs 
(ULMs) are critical domains for the interaction between 
U2AF2 and SFs [113]. During spliceosome assembly, 
U2AF2-SF1 and U2AF2-SF3B1 complexes are sequen-
tially formed at the 3’ splice site via UHM/ULM inter-
actions [114]. UHMCP1, a small molecule, affects RNA 
splicing and cell viability by targeting the U2AF2 UHM 
domain and disrupting the U2AF2/SF3B1 interaction 
[115]. In contrast, NSC 194,308 enhances RNA binding 
by the U2AF2 subunit, inhibiting splicing and stalling 
spliceosome assembly without blocking U2AF interac-
tions. This inhibition occurs before tri-snRNP recruit-
ment and catalytic activation, selectively killing leukemia 
cells harboring spliceosome mutations [116, 117].

Isoginkgetin inhibits recruitment of the tri-snRNP
Isoginkgetin, a natural biflavonoid isolated from Ginkgo 
biloba leaves, exhibits potent anticancer activity by tar-
geting multiple SFs. It inhibits the spliceosome’s tran-
sition from the A complex to the B complex, thereby 
affecting pre-mRNA splicing globally [118]. By blocking 
this critical step in spliceosome assembly, Isoginkgetin 
induces widespread splicing defects, leading to the pro-
duction of aberrant mRNAs and proteins. It also induces 
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cell cycle arrest, particularly in S phase [119]. Addition-
ally, Isoginkgetin disrupts glioblastoma cell growth, 
clonogenic potential, and migration via activation of 
apoptosis and autophagy [120]. Isoginkgetin also inhibits 
cancer cell invasion by downregulating matrix metallo-
proteinase-9 (MMP-9) via the PI3K/Akt/NF-κB pathway 
[121]. Furthermore, it synergizes with doxorubicin to 
inhibit hepatocellular carcinoma progression by activat-
ing autophagy through the AMPKα-ULK1 pathway [122]. 
Moreover, its water-soluble and non-toxic derivative, IP2, 
enhances the presentation of the nischarin-derived epit-
ope on major histocompatibility complex (MHC) I mol-
ecules, thereby activating CD8+ T cells to recognize and 
eliminate tumor cells [123]. The multi-faceted actions of 
Isoginkgetin make it a promising candidate for further 
cancer therapy research.

Target upstream regulator proteins
SFs and spliceosome proteins undergo extensive post-
translational modifications. For instance, proteins in the 
spliceosome and SFs undergo significant arginine meth-
ylation. Numerous SFs, specifically SR proteins, undergo 
extensive phosphorylation. Phosphorylation events 
modify the function and localization of SFs, which are 
crucial for splicing activity. Therefore, modulating the 
methylation or phosphorylation of these spliceosome 
proteins and SFs may offer a viable strategy to curb onco-
genic activity and open avenues for therapeutic interven-
tion. The development of protein arginine methylation 

inhibitors and splicing protein kinase inhibitors targeting 
AS in cancer therapies, both in preclinical and clinical 
stages, is reviewed below.

Protein arginine methylation inhibitors
Directly targeting the spliceosome increases cancer cell 
vulnerability, highlighting the need to explore drugs with 
novel splicing modulation mechanisms. Blocking the 
post-transcriptional modification of splicing factors can 
indirectly disrupt RNA splicing by impairing spliceosome 
assembly and catalytic efficiency of splicing. For example, 
certain drugs can significantly perturb RNA splicing by 
inhibiting the asymmetric or symmetric arginine dimeth-
ylation mediated by type I or II protein arginine N-meth-
yltransferases (PRMTs) [124, 125], especially PRMT1 and 
PRMT5 [126].

PRMT5 is essential for the assembly and normal splic-
ing of spliceosomal UsnRNPs [127, 128]. Currently, 
numerous small molecule inhibitors targeting PRMT5 
have been developed, exhibiting anti-tumor effects in 
a variety of solid and hematological tumors, with some 
advancing to Phase I or Phase II clinical trials (Table 2). 
Based on their mechanism of action, PRMT5 small 
molecule inhibitors are primarily categorized into sub-
strate-competitive and S-adenosylmethionine (SAM) 
competitive inhibitors. With ongoing research and 
development, other types of PRMT5 inhibitors have 
been identified, including methylthioadenosine (MTA) 

Table 2  Small molecule modulators of RNA splicing in cancer clinical trials
Classification Drug Target Phase Trial 

identifier
Disease Year 

study 
started

Refs

SF3B inhibitors E7107 SF3B I NCT00499499 Advanced solid tumors 2007-07 [111]
H3B-8800 SF3B I NCT02841540 Myeloid neoplasms 2016-10 [112]

SAM- competi-
tive PRMT5
inhibitors

JNJ-64,619,178 PRMT5 I NCT03573310 Advanced malignant solid tumors or non-Hodgkin 
lymphomas (NHL)

2018-07 [136]

PF-06939999 PRMT5 I NCT03854227 Advanced Or metastatic solid tumors 2019-03 [133]
PRT543 PRMT5 I NCT03886831 Advanced solid tumors and hematologic malignancies 2019-02 [194]

MTA-cooperative
PRMT5
inhibitors

MRTX1719 PRMT5 I/II NCT05245500 Advanced solid tumors with homozygous MTAP 
Deletion

2022-06 [142]

AMG 193 PRMT5 I/II NCT05094336 Advanced MTAP− solid tumors 2022-02 [147]
PRMT1 
inhibitors

GSK3368715 PRMT1 I NCT03666988 Advanced solid tumors 2018-10 [149]

CLKs inhibitors SM08502 CLK1–3, 
DYRK1A, 
and 
DYRK1B

I NCT03355066 Advanced solid tumors 2017-11 [166]

Sulfonamides 
inhibitors

E7070 RBM39 II NCT00014625 metastatic melanoma 2001-02 [195]
E7070 RBM39 II NCT01692197 Relapsed or Refractory Acute Myeloid Leukemia and 

High-Risk Myelodysplastic Syndrome
2013-02 [185]

E7820 RBM39 II NCT05024994 Splicing factor mutant myeloid malignancies 2021-08 [181]
Tasisulam RBM39 III NCT01006252 Metastatic melanoma 2009-12 [196]
Tasisulam RBM39 II NCT00490451 Unresectable or metastatic soft tissue sarcoma 2007-08 [197]
Tasisulam RBM39 I NCT01284335 Advanced solid tumors 2008-07 [187]
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cooperative PRMT5 inhibitors, PRMT degraders, and 
protein-protein interaction (PPI) inhibitors [129].

A recent report demonstrated that two orthogonal 
PRMT5 inhibitors, GSK3203591 and LLY-283, could 
inhibit the proliferation and self-renewal of glioblas-
toma (GBM) stem cells. This inhibition disrupted splic-
ing across the transcriptome, particularly impacting the 
products of cell cycle genes [130].

PF-06939999, a selective SAM-competitive PRMT5 
inhibitor, showed anti-proliferative activity in non-small 
cell lung cancer (NSCLC) cell models, primarily impact-
ing the pathways responsible for regulating the cell cycle 
and alternative splicing. Additionally, PF-06939999 was 
found to sensitize NSCLC cell lines harboring splicing 
factor RBM10 mutations [131]. RBM10 mutations or 
deletions are the most common SF mutations in NSCLC, 
occurring at a rate of 8% [132]. These findings provide a 
crucial foundation for selecting patient populations for 
clinical trials involving PRMT5 inhibitors. Currently, 
PF-06939999 is in a Phase I clinical trial (NCT03854227), 
with 6 mg daily recommended as the dose for expansion, 
based on first-in-patient dose escalation data [133].

Another novel PRMT5 inhibitor, JNJ-64,619,178, 
exhibits sustained PRMT5 inhibition and significant 
antiproliferative action in a variety of cancer cell lines. 
In solid tumors, JNJ-64,619,178 has been reported to 
increase susceptibility to novel alternative splicing events 
[134]. These events generate novel open reading frames 
and subsequent expression of neoantigens, which may 
enhance the activation of immune cells and provide sup-
port for the utilization of JNJ-64,619,178 in conjunction 
with immunotherapies. A new study has identified that 
the core spliceosome protein SNRPD3 is vital for main-
taining MYCN-driven AS events critical to neuroblas-
toma development. JNJ-64,619,178 efficiently decreases 
cell viability by inhibiting SNRPD3 methylation, which 
in turn impairs spliceosome activity in an SNRPD3- and 
MYCN-dependent manner [135]. Consequently, MYCN 
and SNRPD3 may serve as effective biomarkers for JNJ-
64,619,178 in clinical treatments. JNI-64,619,178 is now 
being investigated in a Phase I trial (NCT03573310). 
The trial has shown first signs of toxicity and effective-
ness against adenoid cystic carcinoma (ACC) and other 
solid tumors. Thrombocytopenia has been discovered as 
the only toxicity that limits the dosage [136]. However, 
no clinical benefit has been observed in myelodysplastic 
syndromes (MDS) patients [137].

These competitive SAM inhibitors, including LLY-283, 
JNJ-64,619,178, and PF-06939999, have shown limited 
specificity for PRMT5 and other methyltransferases, rais-
ing concerns about off-target effects on hematopoiesis. 
Consequently, PRT382, a selective PRMT5 inhibitor, was 
developed, offering improved tolerance and anti-tumor 
activity [138]. PRT-382 restores cell cycle regulation, 

induces cell death, and reactivates negative B-cell recep-
tors regulators in Mantle cell lymphoma (MCL) [139]. 
Despite its anti-tumor activity, PRT-382 has shown drug 
resistance. Combining PRT-382 with the mTORC1 inhib-
itor Temsirolimus overcame resistance to PRMT5 inhibi-
tion and improved survival in resistant models, showing 
therapeutic synergy [140].

Methylthioadenosine phosphorylase (MTAP) is fre-
quently subject to deletion in various types of human 
cancers, including approximately 50% of GBM [141], 40% 
of mesotheliomas [142], and 13% of NSCLC [143]. The 
absence of MTAP leads to the buildup of MTA, which 
competes with SAM for attaching to PRMT5 and func-
tions as a specific inhibitor of PRMT5. Consequently, 
cancer cells with MTAP deletion are highly susceptible 
to PRMT5 inhibition [144]. EPZ015666 (GSK3235025), 
the first orally administered PRMT5 inhibitor, showed 
anti-proliferative effects in MCL. EPZ015666-treated 
MTAP− cell lines showed lower IC50 values than in iso-
genic MTAP+ cell lines, suggesting greater sensitivity to 
PRMT5 inhibition [145]. Furthermore, PRT-382 is rec-
ommended for relapsed/refractory MCL, with MTAP/
CDKN2A deletions and wild-type TP53 as biomarkers 
for favorable responses [139]. MRTX1719, a synthetic 
lethal inhibitor of the PRMT5 Complex, is used to treat 
tumors with MTAP deletion [146]. MRTX1719 is in a 
Phase I/II clinical trial for solid tumors with MTAP dele-
tions. The study demonstrated anti-tumor activity in 
lung, pancreatic, and mesothelioma cancers, and pro-
vided partial early clinical data, highlighted by partial 
responses in six patients [142] A total of 39 patients with 
advanced MTAP-deleted solid tumors were enrolled in 
the phase I trial of the PRMT5 inhibitor AMG 193. Out 
of these patients, five exhibited a partial response follow-
ing the administration of the initial medication [147]. 
This preclinical and early clinical data support a syn-
thetic lethal strategy targeting PRMT5 in MTAP-deleted 
cancers.

It’s interesting to note that loss of PRMT1 makes 
cells more susceptible to PRMT5 inhibition [148]. 
The researchers discovered that the simultaneous use 
of PRMT1 inhibitor MS023 and PRMT5 inhibitor 
EPZ015666 resulted in a synergistic impact on the prolif-
eration of lung cancer and pancreatic cancer [148]. Addi-
tionally, another study described a potent and reversible 
type I PRMT inhibitor, GSK3368715 (EPZ019997), with 
anti-tumor effects in human cancer models. Moreover, 
the combination of a PRMT5 inhibitor with GSK3368715 
produced a synergistic tumor growth inhibition effect 
[125]. The drug GSK3368715 entered a phase I clinical 
trial, which was terminated early due to thromboembolic 
events [149].
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Splicing factor kinases inhibitor
Two major kinase families, Cdc2-like kinases (CLKs) and 
SR-rich specific protein kinases (SRPKs), are primar-
ily responsible for phosphorylating the arginine/serine 
dipeptide repeat domain of the serine and arginine-rich 
(SR) protein family [7, 11, 150]. SR proteins, modified by 
phosphorylation, regulate RNA splicing and participate 
in a variety of physiological functions [151].

The CLK family comprises four isoforms (CLK1-4). 
CLK1 phosphorylates SRSF5 at serine 250, thereby inhib-
iting METTL14 exon 10 skipping and promoting Cyclin 
L2 exon 6.3 skipping. This aberrant splicing promotes 
PDAC cell proliferation (Fig.  4A) [152]. CLK1 can also 
phosphorylate the splicing factor SPF45, inducing the 
skipping of exon 6 of Fas precursor mRNA, generating 
sFas isoforms, inhibiting cell apoptosis, and promoting 

invasion and metastasis in ovarian cancer (Fig. 4B) [153]. 
TG003, a CLK1 inhibitor, reduces SRSF2 and pSRPK2 
expression, suppressing cell proliferation and invasion in 
gastric cancer [154]. Transcriptome analysis reveals that 
TG003 therapy induces mis-splicing in cancer-related 
genes, including CD164, CENPE, and ESCO2 [155].
CLK2 functions as an oncogenic kinase and splicing 
regulator [156]. CLK2 knockdown significantly reduced 
the phosphorylation level of the splicing factor SRSF1, 
promoted ENAH 11a inclusion, generated ENAH-L iso-
forms, and facilitated EMT in breast cancer (Fig.  4C). 
These results suggest that therapeutic targeting of CLK2 
can modulate EMT splicing patterns and suppress breast 
tumor growth. Kenichi Iwai et al. designed a highly spe-
cific CLK2 inhibitor (T-025) that is stable, orally avail-
able, and exhibits anti-tumor activity in vivo. T-025 

Fig. 4  The regulation mechanisms of AS by two major kinase families and their inhibitors in tumors. (A) In pancreatic cancer, CLK1 modulates the 
phosphorylation of the splicing factor SRSF5, which affects the AS of METTL14 and CCNL2 and hence tumor cell proliferation. (B) In ovarian cancer, CLK1 
regulates the phosphorylation of the splicing factor SPF45 and then affects the AS of Fas to inhibit tumor cell apoptosis. (C) CLK2 modulates the phos-
phorylation of the splicing factor SRSF1 in breast cancer, which influences ENAH’s AS and promotes EMT. (D) CLK3 affects the splicing factor SRSF1 and 
then affects the AS of HMGA2 to promote cell proliferation. (E) The CLKS inhibitor SM08502, which inhibits the Wnt pathway by inducing intron reten-
tion of DVL2, ERBB2, LPR5, and TCF7 and exon skipping of TCF7L2 and LEF1, has shown potent anti-tumor effects in gastrointestinal cancer. (F) In colon 
adenocarcinoma, SRPK1/2 promotes SRSF1 phosphorylation, promotes MKNK2 exon 13a skipping, and increases MKNK2b variants, which promotes 
tumor growth. (G) SRPK inhibitors SRPIN340 and SRPKIN-1 regulate SRSF1 phosphorylation and control VEGF AS. The antiangiogenic isoform VEGF-A165b 
contains exon 8b, and the proangiogenic isoform VEGF-A165a contains exons 8a and 8b. This figure was drawn by Figdraw
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reduced the phosphorylation of SR proteins and conse-
quently impaired RNA splicing (mainly inducing exon 
skipping), leading to reduced cancer cell growth, partic-
ularly in MYC-driven breast cancer [157]. SM04690, an 
novel intra-articular CLK2 inhibitor for the treatment of 
knee osteoarthritis, is in Phase II clinical trials [158]. A 
recent study reported that SM04690 promoted the alter-
native splicing of the Hippo pathway protein AMOTL2, 
producing exon-skipping products and activating YAP 
[159].

CLK3 is a dual-specificity kinase for serine/threonine 
and tyrosine substrates. Zhou et al. screened 1,280 com-
pounds Collection for CLK3 inhibition and demonstrated 
that tacrine hydrochloride could be repurposed as a 
CLK3 inhibitor for cholangiocarcinoma (CCA) treatment 
[160]. A recent publication by Cesana et al. reported that 
CLK3 regulated HMGA2 splicing via SRSF1 in human 
hematopoietic stem cells (HSCs) [161]. CLK3 promotes 
HMGA2 exon skipping in an SRSF1-dependent manner, 
shifting the balance to HMGA2-S isoform production 
(Fig.  4D). Functional overexpression of HMGA2-S or 
CLK3, but not full-length HMGA2 (FL), restores prolif-
eration and repopulation potential in adult CD34+ HSCs 
and progenitor cells [161]. HMGA2 is overexpressed in 
various types of cancer, such as lung cancer, gastric can-
cer, and breast cancer [162]. It also promotes cancer stem 
cell (CSC) properties in gastric and breast cancer [163, 
164]. These discoveries highlight CLK3-SRSF1-HMGA2 
splicing as a target for cancer therapy.

High CLK4 expression correlates with poor survival in 
TNBC patients, and CLK4 silencing inhibits TGF-β sig-
naling-induced invasiveness and CSC properties. Impor-
tantly, the CLK4 inhibitor ML167 can effectively inhibit 
breast cancer cell invasion and proliferation [165].

SM08502, a novel CLK inhibitor, shows strong anti-
tumor efficacy in a model of gastrointestinal cancer. 
Mechanistically, SM08502 inhibits the Wnt pathway by 
inducing intron retention in DVL2, ERBB2, LPR5, and 
TCF7 and exon skipping in TCF7L2 and LEF1 (Fig. 4E). 
SM08502 induces Wnt pathway gene level by signifi-
cantly suppressing SRSF phosphorylation [166]. Orally 
administered SM08502 is in Phase I clinical trials, one 
study evaluating combination hormone or chemotherapy 
(NCT05084859) and the other assessing safety and phar-
macokinetics as monotherapy (NCT03355066) (Table 2).

SRPKs, a family of kinases that regulate AS, are over-
expressed in various cancers and promote the splicing of 
oncogenic isoforms of numerous genes. Some research 
has demonstrated that suppressing SRPKs can effectively 
decrease the proliferation of cancer cells, indicating their 
potential as therapeutic targets [167]. Overexpression 
of SRPK1/2 in colon adenocarcinoma (CAC) enhances 
SRSF1 phosphorylation, which subsequently leads to 
MKNK2 AS into MKNK2b, ultimately promoting tumor 

growth [168] (Fig.  4F). The SRPKs inhibitor SRPIN340, 
which regulates SRSF1 phosphorylation, controls VEGF 
alternative splicing and reduces the production of the 
pro-angiogenic isoform VEGF165 (Fig.  4G), reduc-
ing melanoma growth [169]. A recent study found that 
SRPIN340 enhanced immune response to metastatic 
melanoma in mice by upregulating MHC class I/II com-
ponents. These findings provide insights into the func-
tional roles of SRPKs in tumor biology [170]. Hatcher et 
al. described the SRPK1/2 inhibitor, SRPKIN-1, which 
blocked the phosphorylation of SR splicing factors pro-
tein. This led to a change in the isoform of the VEGF 
protein involved in blood vessel formation, transforming 
the pro-angiogenic VEGF-A165a to the anti-angiogenic 
VEGF-A165b isoform (Fig.  4G) [171]. Mussarat Wahid 
and colleagues demonstrated that SPHINX31, an SRPK1 
inhibitor, could inhibit the phosphorylation of SRSF1. 
This inhibition resulted in AS and the production of the 
∆Ex3PD1 variant of PD-1, which enhanced T-cell func-
tionality in killing tumor cells. These findings suggest 
that small-molecule SRPK1 inhibitors could be a novel 
approach for drug-based immunotherapy [172].

Target alternative splicing factors
Developing inhibitors that target specific splicing fac-
tors and RNA-binding proteins has been challenging. 
This challenge arises partly from the absence of catalyti-
cally active sites targeted by small molecule inhibitors. 
An interesting exception is the incidental discovery of 
sulfonamides with anticancer activity that inhibit cancer-
associated splicing factors through previously unknown 
mechanisms. Multiple clinical investigations have dem-
onstrated that aryl sulfonamides with selective antican-
cer activity are well tolerated. These sulfonamides act as 
molecular glues between RNA-binding motif protein 39 
(RBM39) and the CUL4-DCAF15 E3 ligase, leading to 
the degradation of RBM39 [173–175]. Indisulam (E7070), 
Chloroquinoxaline Sulphonamide (CQS), Tasisulam, 
and E7820 have been confirmed to be effective molecu-
lar glues that specifically target RBM39 [173, 174, 176]. 
RBM39 works with U2AF65 and SF3B1 to coordinate 
spliceosome assembly and splice site recognition, acting 
as a coordinator for other regulatory SFs [174, 177].

These compounds have demonstrated excellent safety 
in clinical trials (Table 2) and have been proven to pos-
sess some anti-tumor effects. Most of these drugs are 
in phase II clinical trials; however, the overall response 
rates remain low. This may be due to limited understand-
ing of both the mechanisms of action and the potential 
response biomarkers.

Recently, Wei-Ching Chen et al. discovered that 
DCAF15/RBM39 pathway regulates KRAS4A splic-
ing and that inhibition of RBM39 by Indisulam reduces 
KRAS4A isoforms, suppressing CSCs [178]. Further 
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screening is required to identify drugs that effectively 
target the CSC progenitors for improved treatments. In 
addition, it was demonstrated by Wang et al. that somatic 
SF mutations increased acute myeloid leukemia (AML) 
cells sensitivity to splicing inhibitors, suggesting these 
mutations as biomarkers for sensitivity to Indisulam and 
other sulfonamides [179]. Anke Nijhuis et al. demon-
strated complete tumor regression without recurrence 
in a neuroblastoma model treated with Indisulam and 
showed that Indisulam’s dual targeting of metabolism 
and RNA splicing offers a promising treatment for high-
risk neuroblastoma [180].

RBM39 is crucial for the viability of AML cells with 
SF mutations. A phase II clinical trial evaluated E7820 
(100  mg daily) in myeloid malignancies carrying SF 
mutations [181]. The trial was terminated for futility as 
none of the first 12 patients enrolled achieved an objec-
tive response. Importantly, this study provides the first 
evidence that E7820 can induce RBM39 degradation and 
global changes in RNA splicing in patients. Preclinical 
studies have shown that pharmacological RNA inter-
ference can synergize with PARP inhibitors [182], BCL 
inhibitors [183], and immune checkpoint blockers [184] 
to enhance anti-tumor effects. Current findings sup-
port further exploration of combining E7820 with these 
agents. Additionally, in a phase II clinical trial, Indisulam 
combined with chemotherapy showed a 35% response 
rate in heavily pre-treated AML patients and was well-
tolerated [185]. The anti-tumor activity of Indisulam is 
known to be dependent on the expression of DCAF15 
and RBM39 [173, 186]. Therefore, DCAF15 and RBM39 
may serve as biomarkers for assessing the efficacy of 
this treatment strategy. Moreover, a completed phase Ib 
study explored Tasisulam in combination with five stan-
dard chemotherapy agents—gemcitabine HCl, docetaxel, 
temozolomide, cisplatin, and erlotinib. This study pro-
vided preliminary anti-tumor activity for several com-
binations [187]. Although Tasisulam development was 
terminated, the study provided insights into the com-
bined characteristics, toxicity, and function of the related 
potential mechanisms of synergy, offering future clinical 
development opportunities in specific tumor types.

Target splicing variants
Some small molecule drugs targeting specific splic-
ing variants have been developed to inhibit tumor pro-
gression. For example, Prodigiosin has shown efficacy 
in colorectal cancer by targeting the oncogenic isoform 
ΔNp73 [188], and BC-DXI-843 effectively induced tumor 
cell death by inhibiting AIMP2-DX2 in lung cancer [189]. 
JJ-450 inhibited androgen receptor (AR) and its variant 
ARv7 to suppress castration-resistant prostate cancer 
[190]. However, compounds targeting specific RNA tran-
scripts for cancer therapy remain in the preclinical stage. 

Risdiplam, the first FDA-approved small-molecule drug 
for treating spinal muscular atrophy (SMA), functions by 
specifically targeting RNA transcription [191]. Mechani-
cally, Risdiplam promotes the inclusion of SMN2 exon 7 
by binding to exon 7 splice enhancer and the downstream 
intron of 5’SS in pre-mRNA, resulting in functional iso-
forms and therapeutic effects. Recent progress in splice-
modifying drugs provides a basis for developing new 
therapies [192, 193]. These developments suggest that 
in the future, it may be feasible for small molecule drugs 
targeting cancer-related splicing variants to progress to 
the clinical stage for tumor treatment.

Synergizes RNA splicing drugs for cancer therapy
RNA splicing drugs enhance anti-tumor immunity
Immune checkpoint blockade (ICB) therapy improves 
survival in several tumor types. While effective in more 
immunogenic tumors, ICB remains largely ineffective 
in tumors lacking immune cell infiltration, termed ‘cold 
tumors’. Combining ICBs with other treatments may 
improve the immunological conditions in the tumor 
microenvironment, thereby enhancing anti-tumor 
responses even in ICB-unresponsive tumors [184]. Phar-
macological modulation of RNA splicing may enhance 
tumor sensitivity to ICB. A recent study demonstrated 
that, spliceosome-targeted therapies (STTs) induced 
tumor cell death, particularly in MYC-driven immune-
cold TNBC. The small molecule spliceosome modula-
tors H3B-8800 and the structurally distinct SD6 activate 
antiviral and adaptive immune signaling, inducing tumor 
cell death in immune-competent breast cancer models 
[198]. Another spliceosome modulator Pladienolide B, 
promotes cytotoxic immune cell infiltration and upregu-
lates the expression of PD-L1, augmenting anti-tumor 
response in ovarian cancer [199] and providing preclini-
cal evidence for the combination’s efficacy in ovarian 
cancer treatment.

PRMTs inhibition can also alter alternative RNA splic-
ing [200]. In melanoma, upregulation of PRMT5 inhib-
its inflammation and antigen presentation. Combining 
PRMT5 inhibitor GSK3326595 with ICB therapy can 
limit melanoma growth and enhance immunotherapy 
efficacy in mice [201]. Additionally, in MYC-driven hepa-
tocyte carcinoma (HCC), GSK3326595 promotes lym-
phocyte infiltration and enhances the expression of MHC 
II. Its combination with anti-PD-1 therapy can enhance 
the therapeutic efficacy of HCC [202]. The PRMT1 
inhibitor GSK3368715 can increase T cell-mediated anti-
tumor immune responses and sensitize immune-resistant 
tumors to PD-1 inhibition [203]. MS023, another PRMT1 
inhibitor, acts synergistically with anti-PD-1 immu-
notherapy to enhance anti-tumor responses in TNBC 
mouse model [204].
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A recent study conducted by Lu et al. proposed a new 
method to improve the effectiveness of ICB therapy 
[205]. This study demonstrated that pharmacological 
modulation of RNA splicing generated many immu-
nogenic splice-derived neoantigens that enhanced the 
endogenous immune response post-ICB treatment. Two 
splicing regulating medicines, Indisulam and MS-023, 
were investigated at growth sub-inhibitory dosages. 
Simultaneous administration of Indisulam (or MS-023) 
and anti-PD-1 therapy dramatically suppressed tumor 
growth, outperforming either alone. These studies sug-
gest that splicing modulators with diverse mechanisms 
can induce tumor neoantigens and enhance immuno-
therapy efficacy without genomic alterations, offering 
new directions for the clinical development of ICB ther-
apy to improve responses in cold tumors.

RNA splicing drugs enhance response to BCL inhibitors
Therapy resistance presents a major challenge in can-
cer treatment. Combination therapy is widely used to 
circumvent acquired drug resistance in various cancer 
types. RNA splicing drugs targeting BCL family genes 
may offer novel strategies for BCL inhibitor-resistant 
patients. Eric Wang et al. demonstrated that the modu-
late RNA splicing drug SM09419, via inhibition of CLKs 
and DYRKs, enhances the response to BCL2 inhibition 
(Venetoclax) in leukemia [183]. Daniel Aird et al. iden-
tified that BCL2 genes vary in sensitivity to SF3b splic-
ing modulators and that combining these modulators 
with BCLxL inhibitors induces synergistic cytotoxic-
ity in cancer cells, thereby overcoming resistance [206]. 
Higher expression of MCL1 and BCL2A1 renders BCL2/
BCLxL inhibitors ineffective. However, studies have 
found that E7107 can effectively downregulate MCL1 
and BCL2A1, overcoming BCL2/BCLxL inhibitors resis-
tance [206]. Additional research indicates that combin-
ing natural splice modulator GEX1A with the selective 
BCL-xL inhibitor blocks leukemic cell proliferation in an 
additive way in vitro [104]. H3B-8800 modulates MCL1 
alternative splicing and displays synergistic effects with 
the BCL2 inhibitor Venetoclax in chronic lymphocytic 
leukemia (CLL) cells [107]. Consequently, strategies to 
reprogram apoptosis dependence via splicing modula-
tors provide a rationale for clinical treatments, increasing 
patient susceptibility to BCL2 inhibitors.

RNA splicing drugs synergize with other inhibitors
In a recent study, investigators reported that combining 
PARP inhibitors with Indisulam represents a promising 
strategy for characterizing this combination therapy in 
terms of DNA damage repair and tumor growth [182]. It 
was observed that Indisulam inhibited Olaparib-induced 
DNA damage repair genes activation, and enhanced 
Olaparib’s efficacy. Another study found that Indisulam 

acted as an indirect CDK2 inhibitor and enhanced 
senescence in multiple cancers when combined with 
the CDK4/6 inhibitor Palbociclib [207]. CDK4/6 inhibi-
tors induce retinoblastoma (RB) protein-mediated cell 
senescence, triggering the accumulation of immune cells, 
while splicing modulators can induce splicing errors to 
generate neoantigens [208]. Therefore, combining senes-
cence induction with immunotherapy may be a potential 
therapeutic strategy in the future [209]. Suboptimal doses 
of CDK12/13 inhibitor THZ531 and the RNA splicing 
regulator Pladienolide B can synergistically suppress cell 
cycle progression and proliferation. These findings sug-
gest that the combined application of kinase inhibitors 
and spliceosome inhibitors may offer a new exploitable 
anticancer approach with clinical relevance [210].

RNA splicing modulation with ASOs
RNA therapy offers extraordinary specificity, with the 
ability to target virtually any sequence of pre-mRNA. 
Splice-switching ASOs are short, synthetic nucleic acids 
that bind to specific pre-mRNA regions, blocking splic-
ing factor interactions. Recently, the splice-switching 
ASOs Eteplirsen [211] and Nusinersen [212] were 
approved by the FDA for the treatment of Duchenne 
muscular dystrophy (DMD) and SMA. Eteplirsen binds 
to exon 51 of DMD pre mRNA, leading to the skipping of 
exon 51 and restoration of the DMD open reading frame 
(Fig. 5A). Nusinersen binds to the intronic region of the 
exon 7 flanking sequence in SMN2 pre-mRNA, enhanc-
ing the inclusion of exon 7 and increasing functional 
SMN protein production to correct the disease (Fig. 5B). 
Currently, no splice-switching ASOs have been approved 
by the FDA for cancer therapy; the biggest challenge 
remains the delivery of ASOs to tumor tissues. Several 
preclinical studies have evaluated ASO-conjugated nano-
carriers for cancer therapy [213]. For example, T7 pep-
tides with high affinity for transferring receptors, are 
coupled to nanocarriers for specific tumor targeting in an 
A549 xenograft model [214].

While splice-switching ASO treatment for cancer is 
under evaluation, promising preclinical findings have 
emerged (see Table  3). Many studies have shown that 
splice-switching ASOs can correct cancer-associated 
alternative splicing, induce cell death [52, 215–222], and 
increase anti-tumor immune subtypes [223, 224], lead-
ing to tumor cell growth inhibition and regression in 
xenograft mouse models. For instance, ASOs induce the 
production of pro-apoptotic isoforms such as BCL-XS in 
glioblastoma [52] (Fig. 5C), BCL2L12-S [215] and BAX-L 
in ovarian cancer [216]. The gene encoding kinase Mnk2 
(MKNK2) can be spliced to generate either a pro-onco-
genic isoform Mnk2b or a tumor-suppressive isoform 
Mnk2a. ASOs that induce the Mnk2a isoform activate 
the p38 MAPK pathway, inhibiting oncogenic properties 
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Fig. 5  Splice-switching ASOs modulate AS as a therapeutic strategy. (A-B) Schematic of the mechanism of action of Eteplirsen and Nusinersen, ASOs 
drugs approved by the FDA for treatment. (C) In glioblastoma, ASOs targeted the 5’SS binding to exon 2 of BLC pre-mRNA, inducing a switch of AS from 
the BCL-XL isoform that promotes tumor growth to the BCL-XS isoform that promotes tumor cell apoptosis. (D) In glioblastoma, ASOs targeted binding 
to exon 14 of MNK2 pre-mRNA induced AS conversion from pro-oncogenic isoform MNK2b to tumor suppressor isoform MNK2a. (E) ASOs can target 
and bind to the exon 6 of MDM4 pre-mRNA and induce exon 6 skipping to produce the MDM4-S isoform to trigger NMD, which leads to a decrease in 
MDM4 protein levels and turns off the oncogenic switch. (F) In oral cancer, ASOs can target ESE that binds to exon 5 of PD-L1 pre-mRNA, enhance exon 3 
skipping, generate PD-L1-S isoform, and promote tumor cell pyroptotic effect. (G) Schematic of the process of the decoy oligonucleotide inhibition RNA 
splicing. Decoy oligonucleotide to prevent a reaction between the RNA splicing factor and the ESE, inhibiting the RNA splicing process. (H) The decoy 
IGF2BP3 oligonucleotide interferes with the interaction between IGF2BP3 and PIP4K2A precursor mRNA, resulting in reduced expression of the exon 
5-skipping PIP4K2A-S inhibition of HCC metastasis. This figure was drawn by Biorender
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Table 3  Splicing-modulating ASOs in cancer
Target 
gene

ASOs induced outcome AS events Tumor type model Refs

BCLX Induce Bcl-xS activated apoptosis and 
autophagy

Bcl-xL;
anti-apoptotic

Glioblastoma Cell line [52]

Bcl-xS
apoptotic

BCL2L12 Reduced BCL2L12-L and increased 
BCL2L12-S
and the cells subsequently undergo 
apoptosis.

BCL2L12-L (exon 3 inclusion)
anti-apoptotic

Ovarian cancer Cell line, 
xeno-
graft 
model

[215]

BCL2L12-S (exon 3 skipping) apoptosis

BAX Promote exon 2 inclusion and thus 
increase BAX expression, leading to 
inhibition of tumor growth

BAX-L
(exon 2 inclusion) apoptosis

Ovarian cancer Cell line, 
xeno-
graft 
mouse 
model

[216]

BAX-S PTC, (exon 2 skipping)
anti-apoptotic

PKM Induce switch from the cancer-
associated PKM2 to the PKM1 isoform, 
reversing the Warburg effect and 
inhibiting tumorigenesis

PKM2 (exon 9 inclusion) aerobic glycolysis Hepatocellular 
Carcinoma

Cell line, 
xeno-
graft 
mouse 
model

[217]
PKM1(exon 10 inclusion) oxidative phosphorylation

ERG Induce exon 4 skipping, which 
resulted in reduction of ERG levels 
decreased cell proliferation, cell migra-
tion and increased apoptosis.

ERG
(exon 4 skipping)

Prostate cancer Cell line [218]

MKNK2 Induce switch from the pro-oncogenic 
isoform Mnk2b to the tumor sup-
pressive isoform Mnk2a, inhibited 
glioblastoma development

Mnk2a
(inclusion exon 14a and exon 14b)

Glioblastoma Cell line, 
xeno-
graft 
mouse 
model

[219]

Mnk2b
(inclusion exon 14b)

MDM4 ASO-mediated skipping of exon 6 
decreased
MDM4 abundance, inhibited mela-
noma growth

MDM4
(full-length)
Suppress p53 tumor-suppressor function.

Melanoma Cell line, 
xeno-
graft 
(PDX) 
mouse 
model

[220]

MDM4-S
(exon 6 skipping)
contains a premature termination
codon and is targeted for nonsense-mediated decay
(NMD)

GLDC Induce exon 7 skipping halt cell prolif-
eration, and prevent colony formation

GLDC
(exon7 skipping)
disrupt the open reading frame (ORF) of GLDC transcript 
(predisposing it for NMD)

Non-small-cell 
lung carcinoma

Cell line, 
xeno-
graft 
mouse 
model

[221]

HER4 Induce exon 26 Skipping gener-
ates CYT2 isoform inhibit cancer cell 
growth in vitro and in vivo

CYT2 isoform
(HER4 pre-mRNA exon26 skipping)

Breast cancer Cell line, 
xeno-
graft 
mouse 
model

[222]

CYT1 isoform
(HER4 pre-mRNA exon26 inclusion)

PD-L1 Block ESE of PD-L1, trigger exon 3 
skipping enhanced immune cells’ sup-
pression of cancer cell proliferation, 
inhibited cell growth and induced cell 
pyroptosis

PD-L1-L
(full-length)

Oral cancer Cell line [223]

PD-L1-S (exon 3 skipping)

SLAMF6 Enhanced SLAMF6DΔ17–65 expression
in human tumor-infiltrating lympho-
cytes and improved their capacity to 
inhibit human melanoma in mice

SLAMF6DΔ17–65 includes an alternative acceptor
site, which consists of a 3’ alternative splicing of exon2, lack-
ing amino acids 17–65 of the variable region

Melanoma Cell line [224]
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and reducing glioblastoma growth (Fig. 5D) [219]. Some 
ASOs induce exon skipping, triggering nonsense-medi-
ated decay (NMD) that results in decreased protein lev-
els and impairs tumor growth, such as in the cases of 
MDM4 [220] (Fig.  5E) and GLDC [221]). Resistance or 
transient responses to PD-1/PD-L1 immunotherapy in 
several patients are primarily attributed to tumor eva-
sion from host immune surveillance. Lingyan Yan et al. 
determined that PD-L1 exon 3 is crucial for PD-L1 levels 
and surface translocation for immunosuppressive activ-
ity [223]. ASOs designed and optimized to significantly 
enhance exon 3 skipping, increased a PD-L1-S isoform, 
and decrease the levels of PD-L1-L isoform, along with 
an unexpected pro-pyroptotic effect in tumor cells (see 
Fig. 5F) [223].

Furthermore, Denichenko P et al. devised decoy Oli-
gonucleotides that reduce splicing factor activity in the 
presence of up-regulation or hyperactivity of these fac-
tors (Fig. 5G). Decoy Oligonucleotides, such as the PTBP 
decoy, affect splicing and inhibit tumorigenic traits, tar-
geting SRSF1 can suppress glioblastoma growth [225]. 
IGF2BP3 RNA decoy Oligonucleotides disrupt the inter-
action between IGF2BP3 and PIP4K2A pre-mRNA, 
reducing PIP4K2A‐S isoform with exon 5 skipping. This 
decrease has an inhibitory effect on the metastasis of 
HCC (Fig. 5H) [226].

Conclusions and prospects
RNA splicing occurs cotranscriptionally in a complex 
dynamic process. Aberrant splicing contributes to can-
cer development, enabling cancer cells to survive, prolif-
erate, and adapt to treatment. Advances in nucleic acid 
sequencing and computational biology have enhanced 
our understanding of the correlation between cancer and 
AS [227, 228]. The detection of AS can provide valuable 
biomarkers for cancer diagnosis, prognosis, and treat-
ment. Thus, there is an urgent need to develop highly 
sensitive, specific, and cost-effective methods for the 
detection of alternative splicing isoforms.

To date, most studies have depended on short-read 
sequencing (SRS) technologies to characterize the AS 
repertoire in human tumors. Current SRS technol-
ogy achieves high read depth but is unable to accurately 
detect complex alternative splicing [229]. Long-read 
sequencing (LRS) technologies can more accurately map 
full-length splice isoforms and quantify subtype-specific 
abundance but have low throughput, limiting its applica-
tion to small genomes and transcriptomes [230]. With 
the increasing cost-effectiveness of LRS, it is anticipated 
that it will offer a more extensive perspective on the com-
position of alternatively spliced genes in both tumor and 
normal tissues. Obtaining the correct sequence of full-
length splice isoforms is essential for identifying neoanti-
gens. The potential use of neoantigens generated by such 

splicing abnormalities for personalized immunotherapy 
represents an emerging area in cancer therapy.

Tumors are genomically and transcriptomically het-
erogeneous, and AS exhibits similar complexity. The 
development of single-cell RNA sequencing technology 
(scRNA-seq) enables the identification of specific splice 
variants in heterogeneous tumor tissues [231]. Addi-
tionally, advances in spatial transcriptomics allow cell 
analysis within tissue context. The integration of spatial 
transcriptomics with scRNA-seq and LRS technolo-
gies has enhanced the characterization of functionally 
relevant heterogeneity [232]. The integration of these 
techniques offers a potent strategy to elucidate how AS 
influences tumor evolution and drug responses, as well as 
identifying tumor subgroups linked to drug resistance.

Despite advancements in measuring RNA splice iso-
forms, detecting and quantifying encoded protein iso-
forms remains challenging. Quantitative proteomics for 
detecting encoded protein AS isoforms [233] will further 
elucidate the functional roles of AS alterations in human 
malignancies and expedite the identification of novel 
therapeutic targets.
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