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Abstract 

AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular 
physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, 
overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity 
of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed 
on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent coun-
termeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While 
some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have 
continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of target-
ing. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-
AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch 
on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-tar-
geting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity 
and response to AKT inhibitors, and their current state of affairs.
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Introduction
The discovery of Akt as an oncogene dates to about four 
decades ago, when a novel transforming retrovirus, iso-
lated from an AKR mouse T cell lymphoma [1], was 
found to carry transduced sequences of cellular origin 
[1]. Our collaborative work with Philip Tsichlis and Ste-
phen Staal led to cloning the viral oncogene v-akt as the 
oncogene transduced by the AKT8 retrovirus (originally 
from an AKR mouse T cell lymphoma) [2]. The oncopro-
tein encoded by this retrovirus was named v-Akt. It con-
sisted of viral gag sequences fused to a kinase related to 
protein kinase C, containing a Src homology 2 (SH2)-like 

domain (c-Akt, of cellular origin). Using different strate-
gies to discover novel protein kinases, two other research 
groups independently cloned the identical cellular 
sequence at about the same time [3, 4]. The oncogenic 
potential of v-Akt arose from the myristylation of the gag 
protein at the N-terminus, resulting in constitutive acti-
vation of v-Akt [5]. AKT is now known to consist of three 
highly conserved cellular homologs defined in humans as 
AKT1, AKT2, and AKT3 (reviewed in [6]).

Since then, many attempts have been made to target 
AKT to treat cancer, as it plays a pivotal role in many 
defining features of malignant cells [7–10]. Despite the 
significant amount of progress made with the develop-
ment of AKT inhibitors, the therapeutic benefit gleaned 
from these drugs, mainly in the form of dual therapies, 
is variable. Toxicity resulting from their non-selectivity 
due to AKT, ubiquitous expression [11] and structural 
homology with other functionally important proteins 
[2–4, 12], and the development of resistance because 
of crosstalk between AKT and a plethora of other path-
ways, are ongoing issues. There is a dire need to identify 
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biomarkers of sensitivity, response, and resistance that 
should be individualized for each tumor and patient to 
optimize the therapeutic window of these drugs, which 
requires a deeper understanding of AKT’s perplexing 
biology. Clarifying the roles that different AKT isoforms 
play in cancer-specific tumor initiation and progres-
sion remains an unmet need. As such, indirectly target-
ing AKT by re-directing our attention to the metabolic, 
oxidative, and proteotoxic consequences of AKT hyper-
activation, even autophagy, maybe a better, albeit less 
practical approach, since non-tumoral cells rely heav-
ily on these built-in mechanisms for their normal 
functioning.

Here, we begin with an overview of AKT and isoform 
structure, regulation, and function and briefly discuss the 
mechanisms by which AKT’s function can be perturbed. 
We then describe the roles of the three AKT isoforms 
in overgrowth syndromes and cancer and their effects 
on the immune system, particularly on T cells and mac-
rophages, and discuss the implications of targeting spe-
cific isoforms for cancer and inflammatory/autoimmune 
disease treatment and prevention. We then touch upon 
biomarkers of sensitivity and response to AKT inhibitors, 
AKT inhibitors currently being tested in clinical trials, 
with a focus on capivasertib, problems with their usage, 
how to maximize efficacy while avoiding their many tox-
icities and end with a discussion on novel therapeutic 
angles from which AKT can be targeted.

AKT structure, function & regulation
Akt, also known as protein kinase B (PKB), is a 57-kDa 
integral kinase and signaling node that belongs to the 
protein kinase A, kinase G, and kinase C (AGC) super-
family of serine/threonine kinases, which includes the 
ribosomal S6 protein kinase and serum-glucocorticoid 
regulated kinases (SGK) [13] Under conditions of home-
ostasis, Akt responds to extracellular cues by positively 
regulating cell survival, growth, metabolism, and cyto-
plasmic reorganization and migration, via the phos-
phorylation of serine and threonine residues of many 
downstream substrates [14, 15]. The three human AKT 
genes, AKT1, AKT2, and AKT3, found on chromosomes 
14q32 [16], 19q13 [17], and 1q44 [18] in the mamma-
lian genome, share a canonical structure consisting of an 
N-terminal pleckstrin homology (PH) domain that auto-
inhibits AKT in the basal state by interacting intramolec-
ularly with the kinase domain, an α-helical linker domain, 
a central catalytic (kinase) domain, which contains a 
regulatory threonine residue in its activation loop, and a 
C-terminal hydrophobic, proline-rich motif containing a 
regulatory serine residue. Considerable sequence homol-
ogy exists among the domains of the three AKT isoforms, 
but the linker domain is highly divergent [19–24].

Despite possessing a similar structure, each isoform 
shows varying levels of expression at the mRNA and 
protein levels in different cells and distinct subcellular 
localizations [25], implying that they may have different 
substrate specificities and hence non-overlapping func-
tions, in addition to redundant roles [26]. Their different 
substrate specificities may also be due, in part, to them 
having non-redundant, non-canonical motifs, or rec-
ognizing substrates with a specific conformation [27]. 
Alternatively, they may have overlapping motifs, but 
their different substrate specificities could be the result of 
post-translational modifications (e.g., phosphorylation) 
by other kinases, regulation by miRNAs, or extracellular 
activation (reviewed in [28]). Palladin, for example, has 
recently been identified as a substrate of AKT1, although 
its expression is regulated by AKT2 [29]; the phospho-
rylation of AKT1 on Ser131 in the linker region by casein 
kinase 2 helps direct AKT1’s specificity for palladin [30].

During embryonic development, all tissues express 
Akt1, the principal isoform, to a similar degree, whereas 
Akt2 is predominantly expressed in insulin-sensitive tis-
sues, such as skeletal muscle, liver, and adipose tissue 
[31], and Akt3 is mainly present in neuronal tissue and 
testis, and to a lesser extent, in lungs, mammary glands, 
and adipose tissue [32]. Assigning phenotypic roles to 
the three isoforms was aided by mouse knockout stud-
ies, where it was observed that some Akt1−/− mice were 
non-viable, while others showed severe growth retarda-
tion and developmental deficits, Akt2−/− mice developed 
insulin-sensitive diabetes mellitus, and Akt3−/− mice had 
reduced brain sizes and impaired brain development [33, 
34]. Other examples showing that the non-overlapping 
function of the different isoforms is at least partly attrib-
uted to their subcellular compartmentalization include 
findings that isoform-specific knockdown of AKT in 
MDA-MB-231 cells, a human breast cancer cell line, 
did not force the other isoforms to a different subcellu-
lar location [25]. That is not to say that one AKT isoform 
cannot reside in more than one subcellular compartment, 
as AKT1 and AKT2 have been detected in the nucleus of 
breast cancer cells [29], as well as the cytoplasm or mito-
chondria [26], which makes ascribing a single function to 
a particular isoform in such cellular contexts quite diffi-
cult. In mouse adipocytes, insulin-induced activation of 
the Glut4 glucose transporter is mainly due to the pres-
ence of Akt2 at the plasma membrane. The expression 
of the E17K variant of Akt1 resulted in the constitutive 
plasma membrane translocation of Akt1 and the activa-
tion of Glut4, abolishing the need for Akt2 [35]. How-
ever, the question of why substituting AKT2’s PH domain 
for AKT1 did not facilitate AKT1’s movement to the 
plasma membrane [25] or induce cell proliferation and 
G1/S (cell cycle) progression [36] remains unresolved. 
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It is possible that there are signaling proteins that only 
recognize isoform-specific PH domains and that these 
proteins are nestled within specific subcellular compart-
ments [27]. Lending credence to this premise is the fact 
that T-cell leukemia-1b (TCL1b) is dependent on AKT3’s 
PH domain for binding to AKT3; transferring AKT1’s 
PH domain to AKT3 prevented TCL1b from binding to 
AKT3 [37]. In untransformed fibroblasts, AKT1 pro-
motes migration, and AKT2 has anti-migratory effects, 
whereas in breast cancer cell lines, the opposite holds 
true [38]. Therefore, both cell-type and cancer-specific 
contexts must be accounted for when assigning different 
roles to Akt isoforms.

Studies supporting overlapping roles for the different 
Akt isoforms (reviewed in [39]) include those conducted 
by Chen et  al., who showed that haploinsufficiency of 
Akt1 in Akt2−/− mice causes hyperinsulinemia and hyper-
glycemia and that this is partly due to lipodystrophy 
and leptin deficiency; hyperinsulinemia and hypergly-
cemia were reversed in Akt2−/− and Akt2−/−;Akt1± mice 
when Akt1 was hyperactivated [40]. These results can be 
extended to humans, where families with inherited, dom-
inant-negative mutations in AKT2 often develop type II 
diabetes in combination with lipodystrophy [41, 42].

Akt1, Akt2, and Akt3 appear to be controlled similarly. 
However, the regulatory serine/threonine residues that 
undergo inducible phosphorylation differ between the 
three isoforms (T308/T309/T305 and S473/S474/S472 
on Akt1, Akt2, and Akt3, respectively) [43]. All isoforms 
are basally phosphorylated at Ser124 and Thr450 [19, 44] 
with inducible phosphorylation taking place when tyros-
ine kinase, cytokine, B and T-cell, integrin, G-protein-
coupled, or toll-like receptors are stimulated in various 
cell types, for example, consequential to extracellular 
matrix attachment or stimulation by mitogens [45, 46].

Receptor signaling triggers the activation of the 
phospholipid phosphatidylinositol-3-phosphate kinase 
(PI3K), which converts phosphatidylinositol-4,5-bis-
phosphate (PIP2) to the lipid second messenger, phos-
phatidylinositol-3,4,5-triphosphate (PIP3) [47]. The 
binding of PIP3 to the PH domain of Akt is an essen-
tial step in Akt activation in that it not only recruits 
and anchors Akt to the plasma membrane [19, 48], but 
also promotes the formation of Akt homomultimers 
[48, 49]. Before PIP3 can bind to Akt, however, Akt is 
ubiquitinated by tumor necrosis factor receptor asso-
ciated factor 6 (TRAF6), an E3 ligase, on K8 and K14, 
within the PH domain, for it to interact with critical 
adapters, such as JNK-interacting protein 1 (JIP1) and 
T cell leukemia-1 (TCL1), which facilitate Akt’s recruit-
ment to the plasma membrane [50–52]. Other studies 
maintain that this ubiquitination occurs on K63 with 
the help of tumor necrosis factor receptor-associated 

factor 4 (TRAF4), S-phase kinase associated protein 
2 (SKP2), or TRAF6 [50, 51, 53] and that this is pro-
moted by SET domain bifurcated histone lysine meth-
yltransferase 1 (SETDB-1), which methylates Akt1 at 
lysine 64, paving the way for lysine demethylase 4A 
to recruit TRAF6 or SKP2 to Akt [54]. An increase in 
the deubiquitinating enzyme CYLD lysine 63 deubiq-
uitinase (CYLD) and ubiquitin-specific peptidase 1 
activity results in Akt deubiquitination and hinders its 
plasma membrane recruitment [55, 56]. The concurrent 
binding of PIP3 to the PH domains of Akt and 3-phos-
phoinositide-dependent protein kinase 1 (PDK-1; gene 
name: PDPK1) at the plasma membrane induces a con-
formational change in Akt that exposes the activation 
loop and allows Akt Thr308/T309/T305 to be phospho-
rylated by PDK-1, partially activating Akt1’s catalytic 
domain. Mutations occurring in the PH domain may 
render Akt more likely to bind to PIP3, with subsequent 
phosphorylation and activation by PDK-1, or less likely 
to bind to PIP3 [11].

To become fully activated, Akt must also be phospho-
rylated on Ser473/S474/S472, usually by the mammalian 
target of rapamycin complex 2 (mTORC2), whose mem-
bers include the PDK-2 [57]; mTORC2 can also indi-
rectly activate Akt through a feed-forward mechanism 
by phosphorylating and activating the insulin receptor 
(InsR)/insulin-like growth factor receptor (IGF1R) [58, 
59] In some cases, however, Akt is auto-phosphorylated 
on Ser473 [60], or is phosphorylated by PI3K-related 
kinases, such as protein kinase C-beta II [61], PDK-1, 
upon PDK-1’s interaction with protein kinase c-related 
kinase 2 (PRK-2) [62], DNA-dependent protein kinase 
(DNA-PK) [63, 64] and ataxia telangiectasia mutated 
(ATM), in response to DNA damage and DNA replica-
tion stress in the nucleus [65], or integrin-linked kinase 
[66]. Because of DNA-damaging agents, the direct acti-
vation of Akt by DNA-PK is responsible for chemoradia-
tion treatment resistance. It has recently been shown that 
DNA-PK can also phosphorylate the mTORC2 subunit, 
Sin1, allowing Sin1 to interact with the guanine nucleo-
tide exchange factor (GEF), ECT2 [67]. The basic arginine 
patch in the linker domain can promote Akt1 activation 
by interacting with phosphorylated S473 at the C-termi-
nus [68]. Although commonly phosphorylated by PDK1 
and mTORC2, the regulatory serine/threonine residues 
in the three Akt isoforms can be directly phosphorylated 
by IκB kinase epsilon (IKKE) and TANK-binding kinase 
1 (TBK1) in a PI3K-dependent, PDK-1-, and mTORC2-
independent manner [69–71] The carboxyl-terminal 
modulatory protein (CTMP), which was once thought to 
decrease T308 and S473 phosphorylation and Akt activa-
tion by binding to Akt’s C-terminal domain [72], has now 
been shown to be responsible for Akt phosphorylation 
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and activation and is overexpressed in head and neck and 
breast cancer [73, 74].  A schematic of AKT activation 
and inactivation is shown in Fig. 1A.

Noteworthy is the fact that the expression of AKT iso-
forms fused to an N-terminal Src myristylation signal 
(MGAG residues), which allows Akt to associate with 

Fig. 1 A Schematic of AKT activation and inactivation; activating and inactivating steps are indicated by arrows and blunt-ended lines, respectively 
(modified from [130]). B AKT substrates; functional and biological consequences of their phosphorylation. Schematic showing the cellular functions 
of known AKT substrates. Direct phosphorylation by AKT is indicated by continuous lines, leading to activation (arrow end) or inhibition (blunt end). 
See main text for details
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the plasma membrane via a mechanism that precludes 
the PH domain, is enough to transform embryonic fibro-
blasts and increase the development of mammary car-
cinoma when expressed in a transgenic mouse model 
via the mammary-specific mouse mammary tumor 
virus (MMTV) promoter [75–77]. The viral oncogene 
v-akt also contained an N-terminally myristoylated 
GAG fusion [5, 26], further reinforcing this concept. 
This underscores the importance of both phosphoryla-
tion and membrane association as requirements for Akt 
activation.

Ser477, Thr479, Ser124, and Thr450 are novel phos-
phorylation sites that can also activate Akt1; the phos-
phorylation of the former two residues is mediated by 
mTORC2, or cyclin-dependent kinase 2 (cdk2)/cyclin 
complex [11, 78]. In addition to activation by phospho-
rylation, the binding proteins actin, extracellular signal-
regulated protein kinase (Erk) 1/2, heat shock proteins 
(Hsp) 90 and 27, and Posh can activate Akt indirectly by 
controlling its stability [79].

Once activated, Akt dissociates from the cell mem-
brane and is transported to the cytosol, nucleus, or 
mitochondria, where it phosphorylates and activates 
or inhibits numerous downstream effectors, many of 
which contain the consensus phosphorylation sequence 
RxRxxS/T, culminating in cell growth, metabolism, 
migration, survival, cell cycle progression, and angiogen-
esis, processes that constitute cancer hallmarks and are 
frequently deregulated in cancer cells [9, 80]. The phos-
phorylation and inactivation of tuberous sclerosis 1 and 
2 (TSC1/2) by Akt leads to the disinhibition of the Ras 
homolog enriched in the brain (Rheb) and the accumula-
tion of its GTP-bound form, which favors the conversion 
of mTORC2 to mTORC1. mTORC1 then phosphorylates 
ribosomal protein p70S6 kinase and eukaryotic transla-
tion initiation factor 4E (eIF4E) binding protein-1 (4E-
BP1), enabling protein synthesis [34, 81].

Other notable downstream substrates whose activation 
states are modified by AKT include IκB kinase (IKK) [82], 
mouse double minute 2 homolog (Mdm2) [83, 84], which 
promotes the ubiquitination and degradation of p53, the 
pro-apoptotic proteins BCL-2 associated agonist of cell 
death (Bad) and caspase-9, the cell cycle inhibitors p27 
and p21, glycogen synthase kinase-3 (GSK3) [85] and the 
forkhead family of transcription factors (FOXO) 1–4 [86], 
that are retained in the cytoplasm by 14–3-3 proteins 
when phosphorylated [87]. More recently, the substrate 
repertoire of AKT has been expanded to include telom-
eric repeat binding factor 1 (TRF1), a member of the tel-
omere-bound shelterin complex, which is hyperactivated 
in cancer cells, and endows them with limitless replica-
tive potential [88]. Known AKT substrates and the func-
tional and biological effects of their phosphorylation are 

listed in Table 1 and illustrated in Fig. 1B. Aside from the 
plasma membrane, AKT can undergo activation in other 
subcellular compartments, including the endosome, lyso-
some, endoplasmic reticulum, and nucleus [89].

The cessation of Akt activity is essential in suppressing 
tumorigenesis and is carried out by protein phosphatase 
2A (PP2A), the PH domain leucine-rich repeat-contain-
ing protein phosphatase 1/2 (PHLPP1/2), which dephos-
phorylates Akt at the A-loop and HM sites, and the two 
phosphatases, phosphatase and tensin homolog (PTEN) 
and Src homology 2 domain-containing inositol-5-phos-
phatase (SHIP), which convert PIP3 to PI[3],[4] P2 and 
PI[2, 3] P2, respectively [131–134] (Fig. 1A).

Positive regulation of these negative AKT regulators 
tilts the balance towards AKT inactivation and vice versa. 
For example, ERBB receptor feedback inhibitor 1 pre-
vents PHLPP from interacting with AKT [135]. Sirtuin 
7 promotes AKT dephosphorylation by PHLPP by dea-
cetylating FK506 binding protein 51 (FKBP51) at lysine 
residues 28 and 155, which allows PHLPP to form a ter-
nary complex with AKT and FKBP51 [136]. The activity 
of PP2A is enhanced by the receptor for protein kinase 1 
(RACK1), with which it forms a complex [137], as well as 
aldolase B, which recruits PP2A to phosphorylated AKT 
[138]. WNK lysine-deficient protein kinase 1 stabilizes 
PP2A subunits by interacting with protein phosphatase 2 
scaffold subunit alpha [139]. AKT can antagonize PP2A 
via microtubule-associated serine/threonine kinase-like 
(MASTL) [140]. While inhibitor 1 of PP2A (I1PP2A/
ANP32A), inhibitor 2 of PP2A (I2PP2A/SET), and cellu-
lar inhibitor of PP2A (CIP2A) can directly associate with 
and inhibit PP2A [141, 142], the small peptide encoded 
by the long non-coding RNA LIN00665 can inhibit the 
activity of CIP2A [143].

Besides dephosphorylation, AKT can be inactivated 
via SUMO deconjugation (de-SUMOylation), acetyla-
tion, and K63-linked ubiquitination, the latter targeting 
AKT for lysosomal or proteasomal degradation (although 
it may also activate AKT, as alluded to above). Each of 
these post-translational modifications is subject to regu-
lation by different proteins. De-SUMOylation can occur 
in the presence of small ubiquitin-like modifier (SUMO)-
specific proteases, SENP 1, 2, and 3 [144]. Proteosome-
mediated AKT1 degradation is accomplished by zinc and 
ring finger 1, tetratricopeptide repeat domain 3, tripar-
tite motif containing 13, and mitochondrial E3 ubiquitin 
protein ligase 1, which polyubiquitinate AKT1 at K48 
[145–148]. K48-ubiquitinated AKT may undergo further 
ubiquitination at lysines 284 and 214 before being tar-
geted for lysosomal degradation by the arginylated form 
of HSPA5 (GRP78/BIP) [149]; USP7 opposes the effect 
of HSPA5 by deubiquitinating AKT at K284 and K214 
[148]. The binding of Akt1 to peptidyl-prolyl isomerase 
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Table 1 AKT substrates

Substrate Function Phosphorylation Effect Biological Effect of Phosphorylation Ref.

FOXO4 Transcription factor that induces 
expression of CDK inhibitor p27, 
and pro-apoptosis genes

Cytoplasmic retention and/or degrada-
tion

[90, 91]

GSK3α, 
GSK-3β

Degrades β-catenin, cyclin D1 and Myc
Inhibits glycogen synthesis
Regulates apoptosis by destabilizing 
MCL-1

Inhibition [92–94]

p21CIP1, 
p27KIP1

Members of CIP-KIP family of cyclin-
dependent kinase (CDK) inhibitors

Cytoplasmic retention Cell cycle progression, and cell 
proliferation (including Mdm2, 
except for c-Raf )

[95, 96]

USP43 Represses EGFR in combination 
with NuRD complex

Cytoplasmic retention [97]

USF-1 Induces the transcription of the onco-
gene WBP2

Activation [98]

c-Raf MAP kinase, part of the ERK1/2 pathway Inhibition [99]

Bad Pro-apoptotic Inhibition [100]

Bim Pro-apoptotic Inhibition
(inactivation or 14-3-3 binding)

[101]

Procaspase-9 Pro-apoptotic Inhibition [102]

MST2 Pro-apoptotic kinase Inhibition [103]

CREB Regulates the transcription of anti-
apoptosis genes, including bcl-2 
and mcl-1

Activation Survival (including HK-2 & FOXO4) [104]

IKKα Phosphorylation and ubiquitination 
of IkB, an inhibitor of NF-κB

Activation [105, 106]

FOXO1, 
FOXO3

Transcription factors involved 
in the expression of pro-apoptotic 
genes, and cell differentiation 
and metabolism (n/iTreg differentia-
tion)

Cytoplasmic retention and/or degrada-
tion

[90, 91]

YAP1 Pro-apoptotic Cytoplasmic retention [107]

Mdm2 Promotes ubiquitination and degrada-
tion of p53 when activated

Nuclear translocation [84]

ASK-1 Induces apoptosis via JNK pathway Inhibition [108]

AR Nuclear receptor; mediates growth & 
survival

Activation [109]

Palladin Actin-bundling protein and scaffold. 
Inhibits breast cancer cell migration 
(Akt1)

Activation (Akt1) [29]

Twist1 Upregulates expression of transforming 
growth factor-β2

Activation [110]

Vimentin Increases cell migration and invasion Activation Migration, invasion & metastasis [111]

Girdin Promotes lamellipodia formation 
and cell motility;
Increases VEGF-induced angiogenesis

Activation [112]

TSC2 TSC1/TSC2 complex inhibit mTORC1 
activity

Inhibition [113]

4E-BP1 Negative regulator of translation Inhibition Protein synthesis and cell growth [114]

PRAS40 Negative regulator of mTORC1 Inhibition [115]

BRCA1 DNA repair Inhibition Genomic instability [116]

TRF-1 Chromosome-end protection 
and genomic stability

Activation Telomere maintenance [88]

TBC1D4 Rab GTPase-activating protein; 
regulates membrane translocation 
of GLUT-4

Inhibition
(inhibits its GTPase-activating activity)

[117]

PIKFYVE Facilitates membrane translocation 
of GLUT-4 vesicles

Activation [118, 119]
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Pin1 protects it from proteasomal degradation, which 
requires phosphorylation of Akt1 at T92/450 [149]. 
BRCA1-associated protein 1 (BAP1) is a deubiquitinase 
that, according to some studies, can either stabilize the 
phosphorylated form of AKT by preventing its ubiquit-
ination in concert with a C-terminally truncated form 
of mutant additional sex combs-like protein 1 (ASXL1) 
[150] or inactivate AKT by deubiquitinating and stabi-
lizing PTEN [151]. Acetylation at K14/20 by the histone 
acetyltransferase P300 and lysine acetyltransferase 2B has 
been shown to block AKT activation [152]. Finally, AKT 
can be inactivated by caspase-mediated cleavage during 
apoptosis [153].

PI3K‑AKT pathway: crosstalk with other pathways
Crosstalk with the MAPK pathway
The loss of negative feedback and inhibition of the 
IGF1R, which is normally exerted by phosphorylated 
ribosomal p70S6 kinase, following treatment with mTOR 
inhibitors in cancer, and the upregulation of insulin 
receptor substrate (IRS) 1/2, upon treatment with Akt 
inhibitors, leading to the activation of the PI3K-Akt and 
MAPK pathways, hints at the possibility of cross-talk 
between the two pathways and likely accounts for the 
reduced efficacy of these drugs [34, 154–159]. Similar 
upstream receptor tyrosine kinases activate both path-
ways and often act synergistically to sustain tumorigenic-
ity. Tumors with acquired resistance to tyrosine kinase 
inhibitors (TKIs) can create a bypass track by increasing 
the expression of an alternative receptor tyrosine kinase 

(RTK) that re-activates those very same pathways [160]. 
Moreover, Ras can activate PI3Kα (and therefore AKT) 
by gathering PI3K’s substrate, PIP2, and increasing PI3K’s 
membrane attachment [161].

In other instances, one pathway can compensate for 
inhibiting another pathway by attempting to return it 
to its baseline functioning level. For example, long-term 
treatment with PI3K inhibitors in KRAS-mutant can-
cer cells can lead to the re-activation of AKT, a process 
dependent on KRAS’s downstream effector, ERK2 [162]. 
Decreased clonogenicity of KRAS-mutant cells can be 
accomplished by combining PI3K inhibitors with MEK 
inhibitors [162], which likely offsets the proliferative 
effects of both AKT and ERK. In fact, dual inhibition 
of AKT and MEK/ERK as a strategy to combat tumors 
harboring mutant RAS has shown promising results in 
pre-clinical studies [163, 164]. This is especially relevant 
since some studies have shown that the MAPK pathway 
can tone down the production of reactive oxygen species 
(ROS) generated by the PI3K-AKT pathway, which relies 
heavily on mitochondrial respiration to meet the ana-
bolic requirements of cancer cells [164]. Conversely, AKT 
can, in specific settings, downregulate the ERK pathway 
by phosphorylating c-Raf on T259, effectively deactivat-
ing it [99, 165].

Crosstalk with NF-κB pathway
The NF-κB pathway appears to have a bi-directional 
relationship with the PI3K-AKT-mTORC1 pathway, 
especially the EGFR-PI3K-AKT-mTORC1 pathway, 

Table 1 (continued)

Substrate Function Phosphorylation Effect Biological Effect of Phosphorylation Ref.

TXNIP Negative regulator of GLUT1 and GLUT4 
by promoting their endocytosis

Inhibition Increased glucose uptake and gly-
colysis (including FOXO1, FOXO3 
and GSK-3β)

[120]

TBC1D1 Negative regulator of GLUT1 protein 
expression

Inhibition [121]

PFKFB2 Glycolytic enzyme Activation [122]

HK2 Glycolytic enzyme, mitochondrial 
binder and protector, promotes 
autophagy by inhibiting mTORC1

Activation [123, 124]

ACOT4 Releases free fatty acids from acetyl-
CoA

Activation [125]

ACLY Production of acetyl-CoA from citrate Activation Lipid synthesis [126]

PDE3B Inhibition of lipolysis Activation [127]

eNOS Stimulates vasodilation Activation Angiogenesis (including Girdin) [128, 129]

Legend: FOXO1/FOXO3/FOXO4 forkhead box O 1/3/4, GSK3α/GSK-3β glycogen synthase kinase 3α/β, USP43 ubiquitin-specific peptidase 43, USF-1 upstream stimulatory 
factor-1, MST-2 mammalian Ste20-like protein kinase-2, CREB1 CAMP responsive element binding protein, IKKα IkappaB kinase α, YAP1 yes-associated protein 1, 
Mdm2 mouse double minute 2 homolog, ASK1 apoptosis signal-regulating kinase 1, AR androgen receptor, TSC2 tuberous sclerosis complex 2, 4E-BP1 eukaryotic 
translation initiation factor 4E-binding protein 1, PRAS40 proline-rich Akt substrate of 40 kDa, BRCA1 BReast CAncer gene 1, TRF-1 telomeric repeat factor-1, GLUT-4 
glucose transporter type-4, GLUT-1 glucose transporter type-1, TBC1D4 TBC1 Domain Family Member 4, PIKFYVE 1-phosphatidylinositol 3-phosphate 5-kinase, TXNIP 
thioredoxin-interacting protein, TBC1D1 TBC1 Domain Family Member 1, PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2, HK-2 hexokinase-2, ACOT4 
acetyl-coA thioesterase-4, ACLY ATP citrate lyase, PDE3B phosphodiesterase-3B, eNOS endothelial nitric oxide synthase
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intersecting at the level of IKK. NF-κB is usually retained 
in the cytoplasm by its binding partner, the inhibitor of 
kappa B (IκB) [166]. It is only when IκB is phosphorylated 
by IKK and degraded that NF-κB can translocate to the 
nucleus to activate the transcription of genes involved in 
cellular proliferation, survival, and angiogenesis, as docu-
mented in cases of esophageal cancer [167]. As one of the 
AKT substrates, IKK can activate the NF-κB pathway and 
upregulate EGFR expression in a positive feedback loop 
to enhance the PI3K-AKT-mTORC1 pathway. This makes 
IKK a desirable target when used as either a sole treat-
ment or in combination with other targeted therapies 
[168].

Crosstalk with the Wnt/β-catenin pathway
The Wnt pathway is essential for intestinal homeostasis, 
where it regulates intestinal stem cell renewal and epi-
thelial cell proliferation, and its overactivation causes 
cancer [169, 170]. The activation of the Wnt pathway 
can deactivate Akt signaling, and vice versa, and this has 
been demonstrated in different cancers [171]. In breast 
cancer, Nectin-4 indirectly activates the Wnt pathway 
via the PI3K/Akt pathway, and this, in turn, contributes 
to tumor maintenance by replenishing the pool of cancer 
stem cells [172], which is often implicated in treatment 
failure and tumor relapse. The Wnt pathway can also be 

‘switched on’ through the phospholipase PLD1, downreg-
ulating ICAT by activating the Akt pathway [171, 173].

Crosstalk with the JNK and p38 pathways
As the name suggests, upstream kinase apoptosis signal-
regulated kinase 1 (ASK1) is an upstream kinase of the 
JNK and p38 pathways activated by various stress stimuli 
and induces apoptosis. ASK-1 can be inhibited by AKT, 
which directly phosphorylates ASK1 on its amino acid 
residue S83. This, presumably, allows AKT to establish a 
delicate balance between its pro-tumoral signals and the 
pro-apoptotic signals of the JNK and p38 pathways [108].

Crosstalk with Other pathways
Rad9, as part of the Rad9-Hus1-Rad1 complex, detects 
DNA damage and initiates DNA repair by enabling 
ataxia telangiectasia and Rad3-related (ATR) kinase 
to phosphorylate its downstream effector, Chk1 [174]. 
Rad9 is overexpressed in prostate cancer cell lines and 
clinical samples, where it increases AKT activation and 
promotes tumor cell migration and anoikis resistance 
[175]. A non-canonical form of Thr308 phosphoryla-
tion and Akt activation involves calcium-calmodulin-
dependent kinase, activated by the calcium-calmodulin 
complex when cytoplasmic calcium levels rise [176]. 
In melanoma, the increased expression of RUNX2 

Fig. 2 Modular network of crosstalk among AKT and other signaling pathways. Lines with arrow end and blunt end denote functional activation 
or inhibition, respectively
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endows tumor cells with metastatic capability, possi-
bly by re-activating the MAPK and PI3K/AKT path-
ways [177] Sp1 is a transcription factor whose nuclear 
translocation is contingent upon its phosphorylation. 
In cancer cells, Sp1 increases the transcription of 
genes involved in proliferation, invasion, metastasis, 
stemness, and chemoresistance [178]. In breast cancer, 
Sp1 is activated by GDNF via AKT, causing Sp1 to acti-
vate, in turn, the ST3GAL1 promoter [179]. Figure  2 
illustrates known signaling pathways with which AKT 
intersects, forming a modular network.

Mechanisms of AKT deregulation in cancer & 
overgrowth syndromes
AKT activation in cancer most commonly occurs as 
a result of amplifications, gain-of-function and loss-
of-function mutations, or deletions of AKT pathway 
genes, including those encoding AKT’s upstream/down-
stream modulators, such as growth factor receptors (e.g., 
EGFR), PIK3CA, the p110α catalytic subunit of PI3K, 
Ras, PTEN, neurofibromin (NF1), serine/threonine 
kinases (LKB1), and cyclin-dependent kinase inhibitors 
(p21WAF1 and p27KIP1), and these have been detected 
in numerous epithelial and hematologic malignancies [7, 
180]. Among other genetic alterations involving AKT 
pathway genes, in acral melanoma, the oncogenic p85β 
regulatory subunit 2 of PI3K (PIK3R2) is amplified along 
with PDPK1 (PDK-1), while the tumor suppressor genes 
PIK3R1 (encoding p85α) and PTEN are lost or mutated 
[181, 182]. Other mechanisms of AKT activation are dis-
cussed below.

AKT activation by viral (retroviral) infection
As discussed above, the v-Akt oncogene was isolated 
from the AKT8 retrovirus that had originated in an 
AKR mouse T cell lymphoma [183], but there exists 
another example of a retrovirus that is a causative 
agent of mammalian cancer, in part via activation of 
the AKT pathway. Ovine pulmonary adenocarcinoma 
(OPA) (in sheep), whose etiological agent is jaagsiekte 
sheep retrovirus (JSRV), is unique among retrovi-
ruses in that it has a tropism for differentiated epithe-
lial cells in the lungs [184]. OPA has been used as an 
animal model to investigate the molecular underpin-
nings of pulmonary adenocarcinoma in humans, as it 
bears striking similarities with its human counterpart, 
among which is its histological resemblance [185, 186]. 
Their similarities are also reflected in the type of sign-
aling pathway that is activated, as they both seem to 
activate the PI3K-AKT pathway. In the case of JSRV, 
the expression of the envelope protein is enough 
to transform lung epithelial cells in  vitro, which is 

mediated by the cytoplasmic tail of its transmembrane 
protein [187]. Surfactant protein A (SPA) regulates 
surfactant protein B (SPB) secretion via PI3K-AKT-
mediated activation of the lung-specific transcription 
factor, HNF-3β [188, 189]. The long terminal repeat 
sequences (LTR) in the JSRV genome contain enhancer 
and promoter elements that, upon entry and integra-
tion, are recognized by HNF3β and other members 
of the host’s transcriptional machinery, which drives 
the expression of the envelope protein [190, 191]. It is 
hypothesized that HNF3β is further upregulated via 
the JSRV-PI3K-AKT axis, creating an autocrine loop 
that favors JSRV expression in transformed type II 
pneumocytes [187].

AKT gene amplification (and overexpression)
AKT2 was the first AKT gene shown to be recurrently 
altered in human malignancies, with amplification and 
overexpression observed in 12–20% of ovarian and 
pancreatic cancers and cell lines [17, 192–196]. Fur-
thermore, in ovarian cancer, AKT2 amplification/over-
expression is correlated with poor prognosis [193] and 
high-grade disease [197]. AKT2 is also overexpressed in 
approximately 55% of colorectal cancers and nearly 40% 
of hepatocellular carcinomas [198, 199]. Experimental 
work showed that overexpression of AKT2 in ovarian 
carcinoma cells correlated with increased invasion and 
metastasis [200]. In  vitro kinase assays revealed that 
more than 30% of pancreatic carcinomas had greater 
than threefold increased AKT2 kinase activity com-
pared with normal pancreatic samples and benign pan-
creatic tumors [201]. Unlike AKT2, amplification of 
AKT1 is a rare occurrence in human cancer [1, 7, 181, 
202]. To our knowledge, amplification of AKT3 has not 
been reported in any human cancers. However, over-
expression of AKT3 has been reported in about 60% of 
hepatitis C virus-associated hepatocellular carcinomas 
[203], 10% of acral melanomas [181], and ~ 20% of ovar-
ian cancers [204].

Epigenetic modes of AKT activation
Activation by RNA methylation
Gene expression is regulated at the post-transcriptional 
(RNA) level by epi-transcriptomic modifications, of 
which  N6-methyladenosine (m6A) is the most abundant 
type [205]. RNA methylation has a range of effects on 
RNA splicing [206, 207], nuclear export [208], stability 
[209, 210], translation [210–212], DNA damage repair 
[213], initiation of miRNA biogenesis [214], and immu-
nogenicity [215], and can thus affect tumor predisposi-
tion and outcomes. Decreased m6A has been reported 
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to impair the translation of PHLPP2 and increase the 
translation of mTORC2, resulting in AKT hyperactivity 
[216]; increased methylation and decreased translation of 
PTEN mRNA bring about the same effect in many other 
cancers [217].

AKT activation by microRNAs
Gene expression can also be modulated at the post-
transcriptional level by microRNAs (miRNAs). The miR-
NAs can activate Akt by binding to the 3’ untranslated 
regions (UTRs) of AKT’s negative regulators, prevent-
ing their translation. MAGI-2 is a scaffold protein that 
recruits PTEN to the plasma membrane and positively 
regulates its activity, and in some cancers, it is targeted 
by miR-101 [218]. In hepatocellular carcinoma, miR-21 
inhibits the synthesis of PTEN mRNA [219], while the 
overexpression of miR-222, which suppresses the regula-
tory subunit of protein phosphatase 2A, correlates with 
advanced-stage hepatocellular carcinoma and shorter 
disease-free survival [220]. In colorectal carcinoma, 
PHLPP2 synthesis is blocked by miR-186-5p and miR-
150-5p, eliminating its tumor suppressive effects [221]. 
Chemoresistance in esophageal cancer is caused by AKT 
overactivation secondary to miR-200c, downregulating 
PPP2R1B, another regulatory subunit of protein phos-
phatase 2A [222]. In oral squamous cell carcinoma, ele-
vated levels of miR-182-5p activate AKT by targeting the 
calcium/calmodulin-dependent protein kinase II inhibi-
tor, CAMK2N1, a potent inhibitor of calcium/calmod-
ulin-dependent kinases II and IV (Ca2 + /CaMK II and 
Ca2 + /CaMK IV) [223].

Long non‑coding RNA (lncRNA)‑mediated activation
Long non-coding RNAs (lncRNAs) are more than 200 
nucleotides long and are not translated into functional 
proteins. LncRNAs modulate gene expression at the 
post-transcriptional and transcriptional levels through 
chromatin modifications and general transcriptional 
machinery recruitment [224]. The lncRNA H19 and its 
mature product, miR-675, increase AKT/mTOR signal-
ing in gastric cancer through the lncRNA-H19/miR-675/
RUNX1 axis [225, 226], whereas in gallbladder cancer, 
the same lncRNA can act as an endogenous competing 
RNA (ecRNA) by decoying miR-294-5p to increase AKT 
expression [227]. An interesting lncRNA is LINC00470, 
which forms a ternary complex with the DNA/RNA bind-
ing protein, FUS, and AKT in the cytoplasm to increase 
AKT’s activity, as reported in cases of glioblastoma 
multiforme; phospho-AKT prevents the ubiquitination 
of hexokinase-1 (HK-1), thereby increasing glycolysis, 
inhibiting autophagy, and increasing glioblastoma multi-
forme’s tumorigenicity [228].

AKT activation by post-translational modifications
In addition to serine and threonine phosphorylation, Akt 
is subject to an array of other post-translational modi-
fications, including hydroxylation on proline residues 
[229–231], methylation [232], phosphorylation on tyros-
ine residues, O-GlcNAcylation on serine or threonine 
residues, and SUMOylation, acetylation, and ubiquitina-
tion on lysine residues, which can significantly alter AKT 
activity, even when the function of AKT’s upstream regu-
lators, such as PI3K or PTEN, are unperturbed [233]. The 
phosphorylation of tyrosine 26 in AKT1 by Mer tyrosine 
kinase (MERTK) can promote AKT1 activation by the 
PI3K signaling pathway [234]. Unlike ubiquitination and 
methylation, it is unclear whether SUMOylation, which 
is carried out by the SUMO-conjugating enzyme, Ubc9, 
SUMO-activating enzyme, SAE1, and SUMO E3 ligase, 
PIAS1 [51, 235, 236], is necessary for AKT phosphoryla-
tion [237, 238]; however, as mentioned above, SUMOyla-
tion does play a role in enhancing the activity of AKT 
[50], regardless of PI3K activity and AKT membrane 
localization [235]. Activated AKT, in turn, can phos-
phorylate SUMO1 and Ubc9 at T76 and T35, respec-
tively, increasing overall SUMOylation [238]. In papillary 
thyroid cancer, SIRT7, an NAD + -dependent histone/
non-histone deacetylase, may be targetable, as it often 
shows increased expression; SIRT7 suppresses the tran-
scription of DBC1, an endogenous inhibitor of SIRT1, by 
deacetylating H3K18Ac. This leads to the deacetylation 
of AKT and ribosomal p70S6K1 by SIRT1, permitting 
their phosphorylation and activation [239]. Egl-9 family 
hypoxia inducible factor-1 (EglN1) is an oxygen sensor 
that degrades hypoxia inducible factor (HIF) under nor-
moxic conditions. Among the list of EglN1’s substrates 
is AKT, which hydroxylates at proline residues 125 and 
313. AKT is then inactivated by VHL in an E3 ubiquitin 
ligase-independent manner through dephosphorylation 
of pThr308 by PPA. Under hypoxic conditions, EglN1 
cannot hydroxylate Akt, sending Akt into ‘overdrive’ 
mode. This may explain how hypoxia fosters treatment 
resistance in tumor cells [229, 230].

AKT activation by mutations
The vast majority of AKT1 gene missense mutations 
encompass the PH domain, the most common one being 
E17K, which has been reported in bladder, breast, ovar-
ian, endometrial, urothelial, colorectal, lung and pancre-
atic cancers [240–245]. This mutation is also linked to 
Proteus Syndrome, a rare disease characterized by over-
growth of skin, bone, and soft tissue, causing significant 
disfigurement and functional impairment in affected 
individuals [246]. Activating E17K missense mutations in 
the AKT3 gene have been described in acral melanoma, 
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breast, ovarian, and colorectal cancer [181, 247]. E17K 
enhances AKT’s ubiquitination as well as its affinity for 
PIP3, substantially increasing its ability to localize to the 
plasma membrane and be phosphorylated by PDK1 [53, 
241]. Other missense mutations, including L52R, C77F, 
Q79K, and E49K, have also been identified in the PH 
domain and have similar effects [156, 240]. G171R, pre-
sent in bladder cancer, affects AKT3’s kinase domain and 
leads to AKT phosphorylation and hyperactivation as 
well [248].

Other factors leading to AKT activation
The non-receptor tyrosine kinase SRC can activate AKT 
in the presence of oxidative stress [249]. Moreover, pro-
tein kinase A (PKA) and exchange proteins directly acti-
vated by cAMP (EPAC) can also activate AKT by way of 
cAMP [104, 250–252]. The effect of heat shock on AKT 
activation is controversial, with some studies contending 
that heat shock can activate AKT without the need for 
PI3K, AKT plasma membrane translocation, and phos-
phorylation [253] in the case of oligomeric AKT but not 
monomeric AKT [249]. In contrast, other studies suggest 
that heat shock aids in AKT phosphorylation and activa-
tion [254]. Awareness of these non-canonical modes of 
AKT activation is essential, as they explain why drugs 
targeting PI3K/mTOR may not always be effective.

Role of AKT isoforms in cancer‑specific tumor 
initiation & progression
AKT isoforms may have opposing roles and even pro-
tective roles at different stages of tumor progression in 
different cancers, which is why incorporating therapies 
that are directed against AKT isoforms is so crucial. This 
may be due to the differential level of isoform expression 
in tumors, and this can vary based on the type of tissue 
from which the cancer arose. Alternatively, different AKT 
isoform activity may depend on other factors within the 
PI3K/AKT pathway, such as which upstream PI3K iso-
forms are activated or the presence of specific gain-of-
function PI3K mutations. Other factors include different 
isoforms having distinct subcellular localizations, differ-
ent substrate specificities, or varying effects on similar 
substrates [255]. For instance, AKT2 is selectively acti-
vated in the presence of the PIK3CA hotspot mutation 
H1047R [256]. Cancers with PTEN loss show increased 
activity of the PI3K-p110β (PIK3CB) isoform, which pref-
erentially activates AKT2 [257, 258], while cancers with 
increased activation of SRC-family kinases (SFKs) sec-
ondary to RTK stimulation show increased activation of 
another PI3K isoform, PI3K-p110α (PIK3CA), that acti-
vates AKT1 [259].

In transgenic mouse models of mammary carcinoma, 
driven by Erbb2 and polyomavirus middle T-ag (PyMT), 
germline Akt1 gene ablation inhibited primary tumor 
development and, although increased tumor invasive-
ness, it did not increase the risk of metastasis. In con-
trast, the opposite was true when germline Akt2 was 
ablated [260]. These findings are significant to note since 
they emulate drug therapy. In  the same Erbb2-driven 
mammary carcinoma model, expression of activated 
Akt1 or Akt2, in which the Thr308 and Ser473 residues 
were replaced with phosphomimetic Asp residues (Akt1 
T308D S473D and Akt2 T308D S473D), resulted in 
increased pulmonary metastases and tumor invasiveness, 
particularly in the case of activated Akt2 [260–262].

As a proof of concept, Chen et al. compared the effects 
of cell-autonomous and systemic Akt1 and Akt2 deletion 
on mammary tumorigenesis and found that systemic 
Akt2 ablation did not protect against metastasis, while 
increased primary tumor development was due to a com-
pensatory rise of systemic insulin levels, which hyperacti-
vates Akt and enables ErbB2 activation. They also found 
that the effect of systemic Akt2 ablation on primary 
tumor development can be counteracted by inhibiting 
insulin. Systemic Akt1 ablation, on the other hand, blocks 
metastasis by inhibiting the mobilization and survival of 
tumor-associated neutrophils, which have pro-metastatic 
properties; ablating Akt1 in neutrophils alone is sufficient 
to impede metastasis [263]. The disconnect between 
assumed AKT signaling dependency and drug potency 
is further exemplified by the finding that treatment with 
the pan-AKT inhibitor, MK2206, in a xenograft model of 
MCF-7 and MDA-MB-231 human breast cancer cells, 
increased in vivo lung metastasis, whereas AKT1 knock-
down inhibited the invasiveness of the two xenografts 
[264].

Using genetically engineered mouse models and tetra-
cycline-regulated AKT isoform shRNA, it was found that 
in prostate cancer, AKT1 promotes tumor growth, and 
AKT2 promotes metastasis [257, 265]. In a mouse model, 
knockdown of Akt1 significantly inhibited ovarian cancer 
cell proliferation and in vivo tumor progression, whereas 
disruption of Akt2 increased tumor growth [266].

The role of AKT3 in oncogenesis is less clear-cut. 
Numerous studies have elucidated the role of AKT3 as 
a driver of endocrine therapy and AKT inhibitor resist-
ance in ErbB2-driven breast cancer and breast cancer 
in general [267, 268]. In fact, AKT3 is upregulated in 
ER + breast cancers and androgen-independent prostate 
cancers, suggesting a role for AKT3 in tumor progression 
[269]. However, other studies reported decreased migra-
tion and metastasis in triple-negative breast cancer cell 
lines in which AKT3 is overexpressed [270].
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Effect of AKT isoforms on the immune system: 
implications for inflammatory diseases, cancer 
prevention and treatment
AKT is essential for regulating T cell development, dif-
ferentiation, metabolism, and effector function. By phos-
phorylating FOXO1/3, AKT blocks naturally occurring 
Treg (nTreg) differentiation of double-positive (DP) thy-
mocytes in the thymus and induces Treg (iTreg) differ-
entiation of antigen-stimulated naïve CD4 + T cells in 
the periphery and promotes effector CD8 + T cell (versus 
memory CD8 + T cell) differentiation (reviewed in [271]). 
However, recent evidence suggests that this is grossly 
oversimplified, as the fate of CD4 + T cells is governed by 
the type of substrates that AKT phosphorylates, which 
is in turn dictated by whether AKT is phosphorylated 
on Thr308 alone or Thr308 and Ser473, in response to 
weak or strong TCR stimulation, respectively. Evidence 
suggests that weak TCR stimulation of CD4 + T cells 
promotes commitment to the iTreg lineage over other 
CD4 + subsets [272, 273]. This is substantiated by the 
fact that ex vivo stimulated human T cells show Thr308 
phosphorylation, and expression of a constitutively active 
AKT in human Treg cells diminishes their suppressive 
capacity [274]. In response to weak TCR stimulation, 
AKT favors Treg differentiation by phosphorylating het-
erogeneous nuclear ribonucleoproteins hnRNP L and 
hnRNP A1, as confirmed by mass spectrometry-based 
proteomic analysis; knocking down hnRNP L and hnRNP 
A1 resulted in a decline in Treg cell number [272]. Weak 
TCR stimulation via AKT additionally inactivates the cit-
ric acid cycle enzyme Citrate Synthase, allowing acetyl 
CoA to be instead used for the decompaction of chro-
matin at the FOXOP3 promoter to promote FOXOP3 
expression and iTreg differentiation[275].

Given that PD-1 blockade can expand the number 
of intratumoral memory T cells [276], and given AKT’s 
implication in PD-L1 upregulation in some tumors [277], 
combining AKT inhibitors with anti-PD-1/PD-L1 ther-
apy can produce robust anti-tumoral responses to maxi-
mize therapeutic efficacy [278–280]. Pharmacological 
manipulation with AKT inhibitors of tumor-infiltrating 
lymphocytes (TILs) isolated from cancer patients repro-
grammed them into acquiring a stem-like memory cell 
phenotype, which increased their life span when trans-
ferred into NOD scid gamma (NSG) mice [281]. Ex vivo 
treatment with AKT inhibitors of cytotoxic T lympho-
cytes (CTLs) isolated from a mouse model of melanoma, 
and CAR-T cells in a murine leukemia xenograft model, 
and their re-administration to the mice produced similar 
results, with better tumor control and improved overall 
survival in both cases [281, 282]. One study, however, 
contradicted these findings and maintained that the 
overexpression of AKT in tumor-specific T cells results 

in superior outcomes [283]. It was also found that inhibi-
tion of Akt1 and Akt2, but not Akt3, decreases terminal 
CD8 + T cell differentiation, suggesting that Akt isoforms 
differentially regulate CD8 + T cell differentiation in the 
same way they regulate Treg differentiation [284] (see 
below).

As in tumor cells, AKT isoforms may act in opposi-
tion to regulate Treg cell differentiation. The genetic 
ablation of Akt1 relieved T cell-mediated CNS dysfunc-
tion in a murine model of experimental autoimmune 
encephalomyelitis [285]. In contrast, in another study, 
the genetic ablation of Akt2 and Akt3 had the opposite 
effect, suggesting that Akt1 blocks FOXO1-mediated 
FOXOP3 induction and inducible Treg (iTreg) differ-
entiation in this setting [286]. However, another study 
contradicted these findings and concluded that the Akt2 
isoform, not the Akt1 isoform, limits iTreg differentia-
tion [287]. Human Treg cells are similar to mouse Tregs 
in that AKT3, but not AKT2, appears to direct CD4 + T 
cells toward iTreg differentiation, and they lose suppres-
sive functions and adopt a Th1 profile in the presence of 
AKT1 [288].

The observation that Akt isoforms have opposing 
effects on tumorigenesis and Treg differentiation can be 
extended to macrophages. Macrophages present in the 
tumor microenvironment (TME) that acquire an M2 
phenotype can promote tumor progression and metas-
tasis by secreting immunosuppressive cytokines, such 
as transforming growth factor beta (TGFβ) and interleu-
kin-10 (IL-10) [289, 290], increasing angiogenesis [291], 
and remodeling the stroma by producing matrix metal-
loproteinases (MMPs) [292]. As a result, recent efforts 
have been directed towards targeting M2 macrophages 
or attempting to revert them to an M1 phenotype, which, 
in contrast to M2 macrophages, is known to be tumori-
cidal and pro-inflammatory [293].

In the absence of ICAM-1, a transmembrane glyco-
protein belonging to the immunoglobulin superfamily, 
macrophages acquire an M2 phenotype in the pres-
ence of apoptotic tumor cells through efferocytosis, 
as shown by co-culture experiments, and this is medi-
ated by AKT, which upregulates M2 genes; the systemic 
knockout of the ICAM1 gene increased the develop-
ment of liver metastasis in a mouse model of colon can-
cer compared to ICAM1 wild-type littermates [294].

Akt2 increased the chemotaxis of mouse perito-
neal macrophages and THP-1 cells in response to 
the tumoral chemotactic factor, CSF-1, by increasing 
LIMK/Cofilin phosphorylation and actin polymeriza-
tion, which was abolished by knocking down Akt2 using 
small RNA interference (siRNA) [295]. While Akt1 
increased M1 macrophage polarization by positively 
regulating miR-155 [296], myeloid-specific ablation of 
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miR-155 in a murine model of spontaneous mammary 
carcinogenesis accelerated tumor growth by increasing 
M2 macrophage polarization [297]. In the liver, hepa-
tocellular carcinoma developing in Akt2 knockout mice 
after hepatic Akt1 ablation showed increased infiltra-
tion of macrophages expressing Akt1 [298], which may 
indicate that Akt1 polarizes macrophages towards the 
M2 phenotype.

In a model of dextran sodium sulfate (DSS)-induced 
colitis, exacerbation of intestinal inflammation occurs 
when Akt1 is ablated due to macrophages acquiring 
an M1 phenotype, whereas when Akt2 is ablated, mac-
rophages acquire an M2 phenotype and the inflamma-
tion remits, suggesting that Akt2 could potentially be 
targeted to both treat colitis and prevent colitis-associ-
ated neoplasia. It should be noted, however, that in this 
study, macrophage depletion and reconstitution experi-
ments confirmed that the lack of Akt activity in other 
cells could also contribute to the exacerbation of DSS-
induced colitis and that, in addition to macrophages, 
these cells may play a role in the pathogenesis of 
inflammatory bowel disease (IBD) in humans [299].

The unique interplay between Akt1, Akt2, and Akt3 
in hepatic stellate cells (HSCs), Kupffer cells, and hepat-
ocytes in mediating inflammation, cell proliferation, 
migration, and fibrogenesis has also been implicated 
in alcoholic liver disease (ALD) progression, which 
was revealed in lipopolysaccharide (LPS)- and etha-
nol-induced two-hit model of ALD, both in  vitro  and 
in  vivo. Cell culture experiments showed that siRNA-
directed silencing of Akt2 downregulated inflammatory 
markers in HSC and Kupffer cells and that both Akt1 
and Akt2 inhibited cell proliferation and fibrogenesis 
in hepatocytes and HSCs, but only Akt2 inhibited cell 
migration. Treating mice with a pharmacological agent 
that blocks Akt2 suppressed binge ethanol and LPS 
(EBL)-induced inflammation, whereas Akt1 and Akt2 
blockers downregulated pro-fibrogenic gene expression 
and halted the progression of fibrosis [300].

AKT inhibitors: clinical trials & current therapeutic 
challenges
Four categories of drugs have been used to target AKT: 
1) those that compete with ATP for binding to the 
active site of AKT (competitive AKT inhibitors) and 
stabilize the active conformation of AKT; 2) those that 
bind to the molecular interface of the PH and kinase 
domains, and stabilize the inactive “PH-in” conforma-
tion of AKT (allosteric AKT inhibitors) [301]; 3) PIP3 
analogues, which bind to the PIP3-cavity within the PH 
domain [156]; and 4) the newer generation covalent-
allosteric AKT inhibitors (CAAIs), in which allosteric 
inhibition is combined with the irreversible covalent 

modification of the two cysteine residues in AKT’s acti-
vation loop, translating to a prolonged target occupa-
tion time [302].

Modified PIP3 analogs suffer from poor drug-like 
properties and selectivity due to the presence of other 
molecules within cells that contain structurally related 
PH domains [303]. The ATP-competitive inhibitors 
capivasertib (AZD-5363) and ipatasertib (GDC-0068), 
which have recently progressed to phase III in clinical tri-
als for the treatment of hormone receptor (HR)-positive, 
HER2-negative breast cancer, and triple-negative breast 
cancer, in combination with fulvestrant (CAPItello-291), 
the CDK4/6 inhibitor palbociclib (CAPItello-292), and 
paclitaxel (CAPItello-290) [304], also suffer from lack 
of specificity, as the ATP-binding pocket is conserved 
among kinases in human cells, and the clinically observed 
decrease in efficacy is often due to dose reduction in an 
attempt to counter toxicity [156]. A list of published, 
completed clinical trials of AKT inhibitors, including 
capivasertib, in breast cancer, can be found in Table  2. 
The structure of the complex of human AKT1 with capiv-
asertib is shown in Fig. 3.

To decrease side effects associated with ATP-compet-
itive inhibitors, allosteric (PH-domain) pan-AKT inhib-
itors, such as MK-2206, miransertib (MK-7075), and 
its next-generation inhibitor, Arq751, were developed; 
both miransertib and Arq571 are currently under inves-
tigation for the treatment of Proteus syndrome [322, 
323], with positive results being reported for miran-
sertib, based on the results of a 5-year follow-up phase I 
pharmacodynamic study of an 18-year-old who derived 
significant benefit from the drug, permitting continued 
use of miransertib to assess its long-term safety profile 
[324]. The CAAI borussertib, despite being more effica-
cious compared with other AKT inhibitors, and despite 
showing anti-proliferative effects in cancer cell lines 
harboring alterations of the PI3K/AKT pathway, as 
well as in a KRAS-mutant xenograft model in combina-
tion with a MEK inhibitor, has a poor pharmacokinetic 
profile, making it difficult to achieve an effective thera-
peutic dose with oral application [302, 325]. Ongoing 
clinical trials of AKT inhibitors for cancer therapy are 
listed in Table 3.

As AKT plays a critical role in normal cell physiology, 
particularly in glucose homeostasis, off-target effects 
continue to be problematic, even with CAAIs and allos-
teric inhibitor treatment; diarrhea, hyperglycemia, and 
liver injury with elevation of liver enzymes were among 
the side effects observed in many clinical trials [316, 
326–330]. The hyperinsulinemia resulting from pan-AKT 
inhibition can decrease the efficacy of these drugs, as 
alluded to previously. As the deletion of Akt1 and Akt2 
genes in hepatocytes results in liver damage, hepatocyte 
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Table 2 Completed Clinical Trials of AKT Inhibitors in Breast Cancer

AKT inhibitor Trial name Phase Study arm Study 
population (n. 
enrolled)

Study design Primary 
endpoint

Efficacy 
outcome

Ref.

Capivasertib STAKT 0 (WoO) Capivasertib 
or placebo

Early ER + BC 
(neoadjuvant) 
(n. 48)

Randomized, 
double-blind

Changes in AKT 
pathway markers

NA [305]

D3610C00001 I Capivasertib 
monotherapy

PIK3CA-mut ER 
+ mBC (part Cb) 
(n. 31)

Multipart, open 
label

Safety Tumor shrinkage: 
46%
ORR: 4%

[306]

D3610C00001 I Capivasertib +/- 
Fulvestrant

AKT1E17K mut ER 
+ mBC (part D) 
(n. 63)

Multipart, open 
label

Safety ORR (monother-
apy): 20%
ORR (combina-
tion prior fulv.): 
36%
ORR (combina-
tion fulv. Naïve): 
20%

[307]

FAKTION Ib/II Capivasertib 
or placebo + 
fulvestrant

ER + HER2- mBC, 
postmenopausal 
(n. 140)

Randomized, 
double-blind

PFS mPFS: 10.3 
(capiv) vs 4.8 
(pbo)

[308]

BEECH Ib/II Capivasertib 
or placebo + 
Paclitaxel

ER + HER2 – mBC 
(n. 110)

Randomized, 
double-blind

PFS in ITT 
and PIK3CA-mut 
pop

mPFS ITT: 10.9 
(capiv) vs. 8.4 
(pbo) months
mPFS PIK3CA-
mut: 10.9 (capiv) 
vs 10.8 (pbo) 
months

[309]

PAKT II Capivasertib 
or placebo + 
paclitaxel

mTNBC (n. 140) Randomized, 
double-blind

PFS mPFS: 5.9 (capiv) 
vs. 4.2 (pbo) 
months

[310]

Ipatasertib FAIRLANE II Ipatasertib or pla-
cebo + paclitaxel

Early TNBC 
(neoadjuvant) (n. 
151)

Randomized, 
double-blind

pCR in ITT 
and PTEN-low 
popul

pCR ITT: 17% 
(ipat) vs 13% 
(pbo)

[311]

pCR PTEN-low: 
16% (ipat) vs. 
13% (pbo)

LOTUS II Ipatasertib or pla-
cebo + paclitaxel

mTNBC (n.124) Randomized, 
double-blind

PFS in ITT 
and PTEN-low 
popul

mPFS ITT: 6.2 
(ipat) vs 4.9 (pbo) 
months

[312]

mPFS PTEN-low: 
6.2 (ipat) vs. 3.7 
(pbo) months NA
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death, inflammation, and the secretion of inflammatory 
cytokines, including IL-6, leading to STAT3 activation 
in surviving hepatocytes, which can potentially lead to 
their transformation [298], it is ill-advised to treat obese 
patients or those with pre-existing liver injury with pan-
AKT inhibitors, as these groups of patients may be prone 
to developing hepatocellular carcinoma (HCC) if liver 
injury is sustained. Moreover, treating HCC with pan-
AKT inhibitors could prove futile for similar reasons 
[331].

Most, if not all, of these pan-AKT inhibitors, have failed 
to progress to phase III as monotherapies, highlighting 
the need for combining AKT inhibitors with other treat-
ments due to the complexity of AKT biology, with tumor 

cells are possibly adopting alternative signaling circuitries 
through feedback loops, downstream target alteration, de 
novo resistance through loss of negative feedback inhibi-
tion (discussed previously), and cross-talk between dif-
ferent pathways [301, 329]. Resistance to AKT inhibitors 
in breast cancer, for example, can be caused by TSC1/2 
loss, which activates mTORC1 and blocks apoptosis in 
a BAK-dependent manner, even with a reduced level of 
phosphorylated AKT, possibly by mTORC1-mediated 
translational control of Mcl-1, and can be overcome 
by combining AKT inhibitors with an Mcl-1 inhibitor 
[332, 333]. Moreover, the PI3K-AKT pathway has been 
implicated in resistance to chemo- and radiotherapeutic 
agents [334], necessitating the combination of endocrine 

Table 2 (continued)

AKT inhibitor Trial name Phase Study arm Study 
population (n. 
enrolled)

Study design Primary 
endpoint

Efficacy 
outcome

Ref.

MK-2206 NA 0 (WoO) MK-2206 mono-
therapy

Early BC (neoad-
juvant) (n. 12)

Open label, 
single arm

pAKT reduction 
in tumor tissue

NA [313]

SU2C Ib MK-2206 + 
paclitaxel

mBC (expansion 
cohort) (n. 13)

Open label dose 
finding

MTD ORR: 23%
CBR: 46%

[314]

NA I MK-2206 + 
anastrozole and/
or fulvestrant

ER + HER2 – mBC 
(n. 31)

Open label dose 
finding

RP2D CBR: 36.7% [315]

NA I MK-2206 + trastu-
zumab

HER2 +  mBCa 
(n. 27)

Open label dose 
finding

MTD/RP2D ORR: 7.4%
CBR: 22%

[316]

NA I MK-2206 +/- 
Lapatinib

HER2 + mBC 
(escalation 
+ expansion 
cohort) (n. 8)

Open label dose 
finding

MTD/RP2D ORR: 0% [317]

NA Ib MK-2206 + 
paclitaxel + 
trastuzumab

HER2 + mBC 
(n. 12)

Open label dose 
finding

RP2D ORR: 75% [318]

NA II MK-2206 Mono-
therapy

PIK3CA/AKT mut 
or PTEN altered 
mBC (n. 27)

Open label single 
arm

ORR ORR PIK3CA/AKT 
mut: 5.6%

[319]

NA II MK-2206 + anas-
trozole

PIK3CA-mut ER + 
HER2 – early BC 
(n. 16)

Open label single 
arm

pCR ORR PTEN 
altered: 0%
pCR rate: 0%

[320]

I-SPY2 II MK-2206 + 
standard NAT 
or standard NAT

Early BC (neoad-
juvant) (n. 352)

Open label rand-
omized adaptive

pCR pCR e-rate over-
all: 35% (exp) vs. 
21% (contr)
pCR e-rate (ER+/
HER2-): 17% (exp) 
vs. 13% (contr)
pCR e-rate (ER-/
HER2+): 62% 
(exp) vs. 35% 
(contr)

[321]

Note: Adapted from [447]

Legend: AC doxorubicin and cyclophosphamide, BC breast cancer, Capiv capivasertib, CBR clinical benefit rate, Contr control arm, ER estrogen receptor, E-rate 
estimated-rate, Esp experimental arm, Fulv fulvestrant, HR hazard ratio, HT hormone therapy, Ipat ipatasertib, ITT intention-to-treat, m metastatic, mPFS median 
progression-free survival, MTD maximum tolerated dose, Mut mutated, NA not applicable, NAT neoadjuvant therapy, ORR objective response rate, Pbo placebo, pCR 
pathologic complete response, Popul population, RP2D recommended phase II dose, TNBC triple-negative breast cancer, WoO window of opportunity
a These trials also enrolled patients with HER2+ advanced gastric cancer. However, only results about BC patients are reported
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Fig. 3 Structure of the complex of human AKT1 with capivasertib (PDB entry 4GV1). A Schematic of the complex of AKT1 (gold) with capivasertib 
(purple); phosphorylated Thr308 on activation loop is shown in sticks. B Close-up of AKT1 interacting residues that are within 4 Å of capivasertib. 
Dotted lines indicate hydrogen bonds

Table 3 Completed & ongoing clinical trials of AKT inhibitors for cancer therapy as of August 2024

Drug Company Alternative names Drug Class Targets Trial phase ClinicalTrials.
gov Identifier

MK-2206 Merk & Co MK-2206 hydrochloride Allosteric AKT 1/2/3 II
I
I
II
I

NCT01333475
NCT01480154
NCT01344031
NCT01294306
NCT01245205

GSK2110183 GlaxoSmithKline Afuresertib ATP-Competitive AKT 1/2/3 I/II NCT01476137

GSK2141795 GlaxoSmithKline Uprosertib ATP-Competitive AKT 1/2/3 I
II
I
I/II
II
II
II

NCT01138085
NCT01941927
NCT01935973
NCT01902173
NCT01964924
NCT01989598
NCT01979523

AZD5363 AstraZeneca Capivasertib ATP-Competitive AKT 1/2/3 II
Ib/II
I
II
II
II
III

NCT02523014
NCT02208375
NCT02338622
NCT02117167
NCT05593497
NCT02299999
NCT03903835

GDC-0068 AbbVie Ipatasertib ATP-Competitive AKT 1/2/3 I
II
II
Ib
II
II
I/Ib
Ib/II
II
Ib
II
II
II
II
II

NCT03959891
NCT06400251
NCT05554380
NCT04253561
NCT02301988
NCT04551521
NCT05172245
NCT05538897
NCT05332561
NCT01562275
NCT03395899
NCT02162719
NCT01896531
NCT05564377
NCT02465060
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therapy, targeted therapy, or chemoradiation with AKT 
inhibitors (reviewed in [335]). MERIT40, for example, 
is a component of the BRCA1-A DNA repair complex, 
which undergoes phosphorylation and activation by AKT 
in response to doxorubicin treatment and promotes reso-
lution of chemotherapy-induced DNA damage [336]. In 
HER2 + breast cancer cell lines, resistance to anti-HER2 
monotherapy is associated with PIK3CA mutations, 
leading to continuous PI3K-AKT signaling [337]. Fur-
thermore, AKT-independent, PI3K-dependent cancer 
progression pathways exist [338, 339], meaning that addi-
tional drugs targeting multiple nodes upstream of AKT, 
such as multiple PI3K isoforms and receptor tyrosine 
kinases, might be required.

Another problem with these pan-AKT inhibitors is that 
there is a need for complete understanding as to how they 
exert their effects since some have been shown to inhibit 
one isoform over another preferentially. As an example, 
GSK2142795 inhibits AKT2 more potently than AKT1 
or AKT3, and another pan-Akt inhibitor, GSK2110183, 
showed more potent inhibition of AKT1, using in  vitro 
kinase assays containing purified AKT1, AKT2, AKT3, 
and a GSK3α peptide substrate. Moreover, cancer cell 
lines harboring PTEN loss or mutant PIK3CA required a 
higher drug concentration to establish 50% growth inhi-
bition (IC50) in 2D cultures compared to that needed to 
inhibit AKT kinase activity [340].

Lastly, aside from the AKT1-specific inhibitor 
A-674563 and the AKT2-specific inhibitor CCT128930 
(both ATP-competitive inhibitors), most AKT inhibitors 
lack isoform specificity, and isoform-specific treatments 
should be tailored to the cancer in question for reasons 
mentioned above. Even with A-674563 and CCT128930, 
which purportedly also inhibit PKA and CDK2 [341], no 
in vitro kinase assays to test their isoform preferentiality 
have been performed to date [27]. Like pan-AKT inhibi-
tors, it is not entirely clear what the mechanism of action 
of A-674563 in tumor cells is since it increased (PRAS40) 
or had no effect (GSK3β) on the phosphorylation of sub-
strates shared by all AKT isoforms, although it is expect-
edly decreased the phosphorylation of FOXO1 [342].

Despite all of this, capivasertib has shown immense 
promise for the treatment of breast cancer, with posi-
tive results also being achieved in patients with Cowden 
syndrome [343], who inherit a defective PTEN gene in 
the germline and carry an 85% cumulative risk of devel-
oping breast cancer in their lifetime [42]. Capivasertib 
showed pre-clinical efficacy when used as a single agent 
for treating human breast cancer cell lines with altera-
tions in PIK3CA and MTOR, and more so when com-
bined with anti-HER2 and endocrine therapy [304]. In 
phase I clinical trials of metastatic, estrogen receptor 
(ER)-positive, HER2-negative breast cancers harboring 

PTEN loss-of-function and AKT1 E17K mutations, 
capivasertib plus fulvestrant was shown to be more 
tolerable and clinically effective than treatment with 
capivasertib alone, especially in fulvestrant pre-treated 
patients, including those who have a history of progres-
sion on fulvestrant, with most of the ≥ grade 3 adverse 
effects reported being diarrhea (5% vs. 10%), hyper-
glycemia (5% vs. 30%), and a rash (9% vs. 20%) [307, 
344]. Similar encouraging results were obtained in both 
phase I and II trials of HR-positive and HER2-negative 
breast cancer when capivasertib was co-administered 
with paclitaxel or olaparib [304].

The PI3K/AKT pathway is also altered in gynecologi-
cal malignancies. For example, genetic abnormalities of 
the PI3K/AKT pathway are frequently observed in pri-
mary ovarian cancer and predict patient outcomes [345, 
346]. Thus, several attempts have been made to target the 
pathway in these cancers, with promising results [347, 
348]. In particular, capivasertib, in combination with 
olaparib in a phase Ib dose expansion trial, demonstrated 
durable activity, especially in endometrial cancer. Of the 
19% of patients with recurrent triple-negative breast, 
ovarian, fallopian tube, or peritoneal cancer who partially 
responded to the treatment regimen, those with endome-
trial cancer derived the most significant benefit and had 
the highest partial response (PR) rate (44.4%) [349].

In gastric cancer (GC), increased AKT kinase activity is 
associated with a higher tumor grade and a poorer prog-
nosis [350] and is observed in up to 78% of tumors [351]. 
Moreover, mesenchymal-type gastric cancer cell lines 
were found to be sensitive to agents targeting the PI3K/
AKT/mTOR pathway [352], suggesting that GC can be 
targeted with AKT inhibitors. Data obtained from phase 
II studies of AKT inhibitors in molecularly selected GC 
patients found limited clinical benefit, however, along 
with significant toxicities [353], although, in the umbrella 
VIKTORY (targeted agent eValuation In gastric cancer 
basket KORea) trial, which classified metastatic gastric 
cancer patients based on the presence of 10 different 
biomarkers and assigned patients with PIK3CA muta-
tions and wild-type PIK3CA to combination therapy 
with capivasertib and paclitaxel, the treatment arm with 
PIK3CA mutations derived significant anti-tumor ben-
efit, with an ORR of 33.3% in second-line GC, compared 
to the low response rate (< 15%) in the PIK3CA wild-type 
group [354]. This suggests that optimization of the thera-
peutic efficacy of AKT inhibitors in GC can be attained 
using a biomarker-based approach, which will require 
further investigation in additional phase II/III clinical 
trials.

In prostate cancer, however, capivasertib has yielded 
inconclusive results. In the randomized, placebo-
controlled, phase II ProCAID trial of metastatic, 
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castration-resistant prostate cancer, the addition of 
capivasertib to docetaxel and prednisolone resulted in a 
statistically significant improvement in median overall 
survival (OS) of 31.15 months compared to docetaxel and 
prednisolone alone (20.27 months). However, no statisti-
cal significance was reached in composite progression-
free survival (cPFS) (7.03  months in the capivasertib 
group vs. 6.70 months in the placebo group), a primary 
endpoint that included prostate-specific antigen (PSA) 
progression. The observed OS result in the capivasertib 
plus placebo group will need to be validated in prospec-
tive studies to address the potential for bias [355].

Increasing the therapeutic window of AKT 
inhibitors: future challenges and novel approaches 
to targeting AKT
Impaired glucose tolerance resulting from pan-AKT 
inhibition can be overcome by adding metformin treat-
ment regimens, especially since metformin has anti-
oncogenic effects, based on the results of prior studies 
[356]. Recently, the cholesterol-lowering drug pitavasta-
tin was shown to synergize with AKT inhibitors in killing 
of triple-negative breast cancer cell lines, organoids and 
xenografts, but not ER-positive cell lines and organoids 
[357].  While it may be possible to correct faulty genes 
involving the PI3K-AKT pathway through the use of chi-
meric genome editing tools, such as Clustered Regularly 
Interspaced Palindromic Repeats (CRISPR), Transcrip-
tion-like effector nucleases (TALENs), and zinc-finger 
nucleases (ZFN) (reviewed in [358]), these tools are, for 
the most part, restricted to research settings, and they 
are only mentioned here for the sake of completeness.

Newer approaches developed for targeted protein 
degradation (TPD) to date have taken advantage of the 
ubiquitin-proteosome system (UPS) and autophagy/
lysosome degradation systems present in eukaryotic 
cells, the list of which includes PROTACs [359, 360], 
molecular glues[361, 362], Trim-Away [362], tag-tar-
geted protein degraders [363], specific and non-genetic 
inhibitors of apoptosis protein-dependent protein erosive 
agents (SNIPERs) [364], autophagy-targeting chimeras 
(AUTACs) [365], lysosome-targeting chimeras (LYTACs) 
[366], and autophagosome tethering compounds 
(ATTECs) [367]. The benefits of using PROTACs far sur-
pass those of traditional AKT inhibitors: heterobifunc-
tional degraders tend to exhibit significantly prolonged 
effects compared with AKT inhibitors, as their pharma-
cological effects depend on the re-synthesis rate of the 
protein of interest and not target occupancy. INY-03–041 
is a pan-AKT degrader composed of the ATP-competi-
tive AKT inhibitor, GDC-0068, conjugated to an E3 ubiq-
uitin ligase substrate adaptor recruiter; INY-03–041 was 
demonstrated to have significantly prolonged effects on 

downstream signaling and enhanced potency, which may 
explain its superior anti-proliferative effects [368]. The 
translation of the above drugs to the clinic, however, has 
been hampered by their poor solubility, non-specificity 
of their biodistribution, off-target systemic toxicity, dif-
ficulty finding suitable ligands for the protein of inter-
est [369], as well as their large molecular weights, which 
impede their cell membrane traversal and concentration 
in tissues, resulting in reduced target occupancy [370].

A non-exhaustive list of oligonucleotide-based thera-
peutics includes RNA interference (RNAi) (miRNA 
mimics, shRNA, siRNA. piRNA) [371], anti-sense oli-
gonucleotides (ASOs) (anti-miRNA oligonucleotides, 
peptide nucleic acids, Locked Nucleic Acid (LNA), 
morpholinos) [372], ribozymes [373], long non-coding 
RNAs (LncRNA) [374], and CRISPR [375], which are all 
designed to bind to target RNA transcripts via comple-
mentary base-pairing. While it is relatively non-cum-
bersome to construct sequences that match a target of 
interest with variable specificity, these modalities, like 
PROTACs, suffer from many drawbacks, including 
immunogenicity [376], instability imparted by their 2’ 
hydroxyl (OH) groups [377], toxicity arising from tissue 
non-selectivity (except for the liver and kidney) and the 
platform used for drug delivery, as well as poor tissue 
uptake and endosomal escape [378]. This, combined with 
the fact that some RNA regions form intricate secondary 
and tertiary structures often needed for their processing 
and function, makes the base-pairing design less efficient 
for the target RNA binding [379]. To overcome these 
issues, a wholly new and specific approach to targeting 
RNA, the ribonuclease-targeting chimeras (RIBOTACs) 
came to the forefront, fusing small molecules with RNA 
binding ability to a 2’–5’-linked tetra-adenylate conjugate, 
similar to oligoadenylates produced by cells in response 
to a viral infection, for RNAse L recruitment, thus con-
verting any inert RNA-binding small molecule into a bio-
active RNA degrader, i.e., the RIBOTAC [380]. The ability 
of RIBOTACs to degrade multiple target RNAs in succes-
sion, a feature it shares with PROTACs, means that only 
low concentrations are required to achieve phenotypic 
effects, giving RIBOTACs an advantage over oligonucle-
otide-based therapeutics [381]. However, only 50–60% of 
the target RNA has been reported to be degraded at any 
given point in time, possibly due to the rapid turnover of 
the target RNA. This attribute is intrinsic to RNA species 
in general rather than a problem with RIBOTACs spe-
cifically [382]. As with PROTACs, these molecules’ high 
molecular weight and charged nature give them inferior 
physicochemical properties [383]. Another disadvan-
tage inherent to RIBOTACs is the difficulty in finding 
small molecules that bind selectively to the RNA mol-
ecule of interest [381]. Furthermore, the RNA-binding 
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and RNAse-recruiting ligands must be oriented so that 
RNAse L and the target RNA can interact, which is chal-
lenging to accomplish on a spatial level. Yet another 
problem with RIBOTACs that may be overlooked is that 
they do not work equally well in all cells since RNAse L 
expression levels vary among different tissue types [382]. 
Proximity-induced nucleic acid degraders (PINAD), 
which have been successfully used to target structural 
genomic variants of SARS-CoV-2, represent a ‘new and 
improved’ version of RIBOTACs, wherein the RNAse 
recruiting ligand is replaced by an imidazole group, a 
component of the active site of many ribonucleases [382]. 
It can be envisioned that both RIBOTACs and PINADs 
could be directed onto AKT mRNAs as a future option 
for therapy. Even positive upstream and downstream 
AKT regulator transcripts, and oncogenic non-coding 
RNAs, such as miRNAs and lncRNAs, that target nega-
tive AKT regulators and show altered activity or levels 
in various cancers, as described in earlier sections of this 
review, could be targeted with such RNA-based modali-
ties. By using CRISPR activation (CRISPRa) (reviewed 
in [384]) and genetically engineering long non-coding 
RNAs (lncRNAs) [374], it is even possible to promote the 
transcription and translation of suppressors of the AKT 
pathway. This is especially true if the mechanism of their 
inactivation is epigenetic in origin.

Honing in on each AKT isoform individually, akin to 
some of the CAAIs that have been in recent development 
[385, 386], by potentially targeting sequences or residues 
at the transcript or protein level, that are unique to each 
isoform, using the above approaches, would yield more 
desirable outcomes. Whereas these can target the iso-
forms at the post-transcriptional/translational and post-
translational levels, CRISPR interference (CRISPRi) [387] 
and lncRNAs [374], for example, can repress the respec-
tive genes at the transcriptional level. Still, before this can 
be undertaken, one must attempt to clarify the relative 
expression levels of each AKT isoform in various cancer 
types, as well as dive deeper into what roles they play in 
different cancer progression ‘parameters’. The latter goal 
can be attained by identifying the substrates of each iso-
form using cellular proteomic analysis of peptides per-
formed on various cancer cell lines by either knocking 
out isoform-specific genes, silencing them using siRNA 
technology [27, 388], or inhibiting each isoform using 
the recently developed isoform-specific nanobodies 
[389] or CAAIs [386]; the latter three methods can also 
form the basis for the development of isoform-specific 
drugs, for example, isoform-specific anti-sense oligonu-
cleotides (ASOs). The AKT2-specific nanobody, Nb8, 
targets the hydrophobic motif and was found to induce 
cell cycle arrest, autophagy, and the loss of focal adhe-
sions in MDA-MB-231 cells by reducing hydrophobic 

motif phosphorylation [390]. The problem with identi-
fying AKT isoform substrates using cellular proteomics, 
however, is its inability to distinguish between AKT and 
non-AKT substrates; for example, other kinases, such 
as Proviral Integration site for Moloney murine leuke-
mia virus 2 (PIM2), ribosomal S6 kinase (RSK), or PKA, 
recognize similar versions of the AKT substrate motif 
[245, 391–393]; PIM2 phosphorylates similar sites on the 
anti-apoptotic protein and cell cycle regulator, BAD and 
p21WAF, as AKT, and S455 on ATP citrate lyase (ACLY) 
can additionally be phosphorylated by PKA, mTOR, 
or Branched-Chain Ketoacid Dehydrogenase Kinase 
(BCKDK) [394–399].

Another problem with cell-based assays is that they can 
confound the results because of compensation by other 
AKT isoforms [32]. This problem can be overcome by 
performing LC–MS/MS on phospho-serine and -threo-
nine peptides following the re-expression of each AKT 
isoform in Akt1/2/3 knockout lung fibroblasts generated 
from transgenic mice; this approach identified IWS1, 
among other substrates, as being an Akt1- and Akt3-
preferred substrate [400]. One of the limitations of this 
approach is that the findings only apply to a single cell 
type (fibroblasts), and they do not factor in non-canoni-
cal substrate motifs recognized by each isoform.

Yet a third issue is assigning substrates to a particu-
lar isoform when, under specific cellular conditions or 
in certain cell types, only one isoform is expressed [27]. 
As a case in point, EZRIN was initially identified as an 
AKT2 substrate in Caco-2 cells, even though AKT1 and 
AKT3 are not known to be expressed at sufficiently high 
levels in these cells [401]. Likewise, the identification 
of AKT isoform substrates using in  vitro assays has the 
disadvantage of lacking cellular compartmentalization, 
meaning that substrates that may not interact with spe-
cific AKT isoforms within cells may be falsely labeled as 
being an isoform’s substrate by interacting with said iso-
form in vitro. Hence, identifying substrates shared by and 
unique to each AKT isoform requires the integration of 
results obtained from both in vitro and cell-based assays 
[27].

On the other hand, isoform compensation might be a 
problem encountered in the application of isoform-spe-
cific therapy [32, 402, 403], which is why targeting more 
than one isoform might be a more effective therapeutic 
strategy. Although pan-AKT inhibitors can theoretically 
negate these effects, they are not without problems, as 
previously discussed.

Aptamers are short DNA- or RNA-based oligonu-
cleotides that, upon folding into unique secondary and 
tertiary conformations, can recognize different target 
molecules, such as metal ions, proteins, protein aggre-
gates and metabolites [404]. Aptamers are equivalent 
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to antibodies in terms of their affinities and specifici-
ties for target molecules, but are easier to synthesize 
and modify, are inexpensive, do not elicit an immune 
response, can self-assemble, and have the ability to 
switch conformations with ease [405]. The inher-
ent weakness of PROTACs have resulted in the emer-
gence of two targeted protein strategies that combine 
PROTACs with aptamers, called aptamer-PROTAC 
conjugates [369] and aptamer-based PROTACs [406]. 
However, the use of aptamers for targeted protein 
degradation has many downsides [369, 404], many of 
which can be successfully navigated through the use of 
nanoparticles, notably lipid nanoparticles, which have 
shown success in clinical trials as delivery vessels for 
genetic material-containing drugs [407]. Table  4 sum-
marizes the main protein-based modalities that have 
been employed for targeting the PI3K-AKT pathway, 
and their mechanisms of action.

Nanoparticles can act as a delivery vehicle not only 
for nucleic acids, but for drugs and proteins as well. 

Distinctive features of nanoparticle-based delivery sys-
tems that make them a burgeoning platform for cancer 
treatment is their biocompatibility, stability in the cir-
culation, enhanced permeability and retention effect in 
tissues, specific cellular targeting, membrane traversal, 
intracellular target localization, sustained drug release 
and superior cytotoxic capabilities [415–417]. Another 
advantage is that nanoparticles themselves can be con-
jugated to aptamers for targeted delivery; Gonzalez-
Valdivieso and colleagues devised a docetaxel and AKT 
peptide inhibitor recombinant fusion-containing elastin-
like recombinamer (ELR) vehicle, which was conjugated 
to a DNA aptamer that specifically recognizes the tumor 
marker, CD44, to selectively target colorectal cancer 
cells [418]. Tumor selectivity has also been endeavored 
through the use of pH-sensitive smart cancer nano-thera-
nostics that home to the acidic tumor microenvironment 
(TME) [419]. The simultaneous delivery of multiple drugs 
is another advantage of nanotherapeutics, with antibody-
conjugated drug-loaded nanotherapeutics (ADN) being 

Table 4 Protein-based approaches for targeting the PI3K-AKT pathway

Legend: POI protein of interest, CRBN cereblon, AURKB aurora kinase B, PROTAC  proteolysis-targeting chimera, PI3K phosphatidylinositol-3 kinase, PIP3 
phosphatidylinositol (3, 4, 5)-trisphosphate, PTEN phosphatase and tensin homolog, KRAS Kirsten rat sarcoma viral oncogene homolog, VHL Von Hippel-Lindau, BRAF 
v-raf murine sarcoma viral oncogene homolog B1, SAR structure-activity relationship

Approach Mechanism(s) of Action Examples of Applications Ref

PROTACs A linker connects an E3 ligand to a POI 
ligand. The POI ligand binds to the POI, 
and the E3 ligand recruits E3 ligases 
to the POI to ubiquitinate and mark the POI 
for degradation by the proteosome system.

Development of INY-03-041, a pan-AKT degrader derived from the ATP-
competitive AKT inhibitor, GDC-0068, conjugated to lenalidomide, which 
recruits the E3 ubiquitin ligase substrate adaptor, CRBN.

[368]

Development of MS21, a VHL-recruiting, pan-pAKT targeting PROTAC 
derived from the ATP-competitive inhibitor, AZD5363, which reduced 
both cell and tumor growth in mutant PI3K-PTEN and wild-type, 
but not mutant, KRAS/BRAF cell lines, by destabilizing AURKB and arrest-
ing cells in the G2-M phase.

[408]

Development of MS15, a pan-AKT, allosteric inhibitor-based PROTAC, 
which potently and selectively degraded AKT, and inhibited the growth 
of both PI3K-PTEN and KRAS/BRAF-mutant cancer cells.

[409]

The discovery of additional pan-AKT targeting, VHL-and CRBN- recruiting 
PROTACs, MS143, MS98, MS5033, and MS170 using SAR, which inhibited 
AKT downstream signaling and cancer cell proliferation. MS143, in par-
ticular, showed superior anti-growth properties compared with AZD5363. 
All four drugs additionally demonstrated adequate plasma exposure lev-
els in mice. MS143 was also effective in suppressing tumor growth in mice 
without causing any appreciable toxicity.

[410, 411]

Using an in silico modeling approach to design a unique pan-AKT, CRBN-
recruiting PROTAC, B4, that has a pyrazole-furan conjugated piperidine 
derived AKT-targeting moiety. B4 potently inhibited AKT downstream 
signaling and demonstrated efficacy against hematological cancers.

[412]

Development of WJ112-14, a CRBN-recruiting, pan-class I PI3K isoform 
binding module that reduced off-target effects by selectively degrading 
PI3Kα in cancer cells.

[413]

Nanobodies Specific binding to dysregulated or over-
expressed oncogenic proteins in tumor 
cells to block their activity or trigger their 
degradation.

Development of AKT1- and AKT2-specific nanobodies to dissect their 
isoform-specific functions, and inhibit their interaction with PIP3.

[389, 414]

Development of the hydrophobic motif-targeting AKT2 nanobodies, 
Nb8 and Nb9, which decreased MDA-MB-231 cell growth and viability 
by decreasing AKT activation and expression/phosphorylation of down-
stream AKT targets, decreasing the number of focal adhesions and stress 
fibers, and inducing cell cycle arrest and autophagy.

[390]
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a significant advancement in the field of immunotherapy 
[420]. The approach of using an anti-CD47 and anti-
PDL1 antibody pair conjugated to the surface of a nano-
particle encasing a PI3K-AKT-mTOR inhibitor, proved 
to be more efficacious in reducing tumor burden in a 
non-small cell lung cancer immunocompetent mouse 
model, compared with current approaches using a PDL1 
inhibitor [420]. Perhaps designing aptamer-conjugated, 
or microenvironment- or stimuli-sensitive ADN, for 
targeted delivery, can overcome the limitations of RNA- 
and protein-based degraders for AKT isoform-target-
ing, especially given the well-established role of AKT in 
immune evasion [9] and the effect of different AKT iso-
forms on immune cells, as discussed above.

Designing isoform-specific drugs having mutant or 
allele selectivity, such as inhibitors that target AKT1 
E17K (https:// www. rcsb. org/ struc ture/ 8uw9), can poten-
tially result in an even greater reduction in off-target 
effects, similar to drugs targeting the mutant form of 
PI3Kα, which delayed the onset of rash and hyperglyce-
mia in patient-derived tumor xenograft models [421].

An indirect, novel approach to targeting AKT would be 
to target proteotoxic stress imparted by AKT hyperacti-
vation due to ongoing protein synthesis. Typically, 30% or 
more of newly synthesized proteins in cells are immedi-
ately recycled due to folding or translation errors [422]: 
this percentage increases depending on various extrinsic 
and intrinsic cellular cues [423]. Under proteotoxic stress 
conditions, cells deploy defense mechanisms to help mit-
igate this stress and restore homeostasis. If stress-miti-
gating factors are absent or the cell exceeds its threshold 
of stress tolerability, cell death ensues [424, 425]. When 
cells are subjected to hyperthermia, for example, protein 
unfolding occurs. This activates the transcription factor 
HSF-1, which upregulates the expression of chaperone 
proteins that recycle unfolded proteins or assist them 
with refolding [426]. Moreover, the accumulation of 
unfolded proteins in the endoplasmic reticulum results in 
‘ER stress’, which causes the cell to halt protein synthe-
sis and unleash an unfolded protein response through 
PERK, IRE1α, and ATF6 [422, 427]. ATF6 induces the 
transcription of the XBP1 gene [428], while IRE1α 
orchestrates the unconventional splicing of ATF6 mRNA, 
creating an open reading frame (ORF) that is translated 
into a shorter version of XBP1, known as XBP1s [429]. 
XBP1s functions as a transcription factor that, like HSF-
1, induces the expression of chaperone proteins that help 
combat ER stress [430]. Cells harboring hyperactive AKT 
or loss of PTEN displayed elevated levels of XBP1 and 
HSF-1, were more sensitive to heat shock, and depended 
on XBP1 for growth, suggesting that XBP1 is a therapeu-
tic vulnerability in AKT-hyperactivated tumors [423].

Increased glycolytic shuttling of glucose and mito-
chondrial metabolism are other novel targetable features 
of cells with hyperactivated AKT. In mouse models of 
PTEN-deficient prostate cancer, combining rapamycin 
with a ROS inducer causes tumor regression, prolongs 
survival, and sensitizes tumor cells to ROS-induced 
cell death by tilting the balance towards redox stress 
and overwhelming ROS scavengers. A similar result is 
observed when the hexokinase-2 gene (HK2) is deleted 
[431]. Translating these findings to the clinic may only 
sometimes be feasible, however.

Autophagy is an area of intense research in the field 
of cancer biology. It is a double-edged sword in that 
it can promote or suppress tumorigenesis, depend-
ing on the cellular context; blocking autophagy at a late 
stage has been shown to induce cell death, according to 
multiple studies [432–436]. Autophagy is activated by 
nutrient deprivation, the accumulation of abnormal pro-
teins, or organelle damage, and involves the formation 
of autophagosomes that encircle the components to be 
degraded; autophagosomes then fuse with lysosomes, 
forming autophagolysosomes, which are digested and 
recycled [436]. Combining an AKT inhibitor with a lys-
osomotropic agent in AKT-hyperactivated cells to block 
autophagy is another therapeutic strategy that may 
warrant further investigation. AKT inhibition alone is 
enough to activate autophagy, either by increasing ER 
stress, increasing ROS formation and mitochondrial 
damage (mitophagy), activating FOXO proteins, decreas-
ing glucose and mitochondrial metabolism, or inhibiting 
the mTORC1 complex, and that in itself can cause cell 
death, either via apoptosis or self-digestion. However, 
PC3 cells expressing shRNA against Akt1/2/3 can sur-
vive, even under serum-starved conditions, and when 
grown as xenograft tumors, can develop after a period of 
tumor regression, suggesting that autophagy induced by 
Akt inhibition protects against cell death. This was cor-
roborated when it was observed that treating cells with 
an AKT inhibitor and chloroquine, a lysosomotropic 
agent that blocks autolysosomal digestion, resulted in an 
increase in apoptotic nuclei, caspase-3 activation and an 
increase in the size of autophagic vesicles.

Interestingly, the authors observed an increase in mito-
chondrial superoxide and cellular ROS levels upon treat-
ment with AKT inhibitors alone, which was resolved 
shortly after that, whereas co-treatment with chloro-
quine resulted in sustained ROS generation. Treating 
cells with a ROS scavenger inhibited autophagy caused 
by AKT inhibition and prevented cell death, leading the 
investigators to conclude that under autophagy-inducing 
conditions caused by AKT inhibition, PC3 cells employ 
autophagy as a pro-survival mechanism to prevent the 
aggregation of ROS generators that can accentuate ROS 

https://www.rcsb.org/structure/8uw9
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damage, causing both apoptotic and non-apoptotic cell 
death [437, 438]. However, a phase I trial to assess the tol-
erability and safety of MK2206 with hydroxychloroquine 
for the treatment of advanced solid tumors reported 
minimal anti-tumoral activity with many drug-related 
adverse effects [439].

Chromatin modifiers, such as lysine methyltransferase 
inhibitors and histone deacetylase inhibitors, may prevent 
the activation of AKT via post-translational modification. 
They may also have the benefit of increasing or altering 
the expression of tumor suppressive genes, including 
those that negatively regulate AKT. AKT normally forms 
a complex with the chaperone protein, HSP90, which is 
required for its structural maturation and stability [440]. 
Utilizing HSP90 inhibitors that occupy the ATP-binding 
pockets of these proteins can shorten the half-life of AKT 
and decrease its expression, which is noteworthy from a 
therapeutics perspective (reviewed in [441]).

Biomarkers predicting sensitivity and response 
to AKT inhibitors
Previously, numerous clinical trials were undertaken 
to try to identify biomarkers of sensitivity and response 
to AKT inhibitors, but the outcomes have been mixed, 
and there appears to be a discord between alterations 
in the PI3K-AKT pathway and response to AKT inhibi-
tors. In a nonrandomized trial of patients with AKT1 
E17K-mutated metastatic histologically variable tumors, 
for example, treatment with capivasertib only mildly 
affected pS6 and PTEN phosphorylation [442], while in 
the STAKT trial, a two-stage, double-blind, randomized, 
placebo-controlled study conducted in patients with 
ER + breast cancer, a decrease in the level of pGSK3β, 
pPRAS40, pS6, a paradoxical increase in pAKT, and an 
increase in nuclear FOXO3A from baseline (the latter 
two findings being consistent with the mechanism of 
capivasertib) were observed in the capivasertib-treated 
group versus the placebo group (n = 11) [305]. In phase II, 
randomized, multicenter, I-SPY2 trial, in which patients 
with early hormone receptor (HR)-negative/HER-2 
positive breast cancer and triple-negative breast cancer 
(TNBC) received neoadjuvant treatment with MK-2206 
plus standard therapy (versus placebo plus standard ther-
apy), pathological complete responses were associated 
with high pre-treatment levels of pAKT, pSGK, pmTOR, 
and pTSC2, in the HER-2 positive subset only, as deter-
mined by phosphoproteomic analyses. In the TNBC 
group, however, patients with more significant patho-
logical responses had lower levels of the correspond-
ing biomarkers (pAKT, pmTOR, and pTSC2) [443]. In 
two randomized, phase II trials, LOTUS and PAKT, an 
increase in progression-free survival (PFS) was observed 
in TNBC patients with PIK3CA/AKT/PTEN alterations 

who were treated with either capivasertib or ipatasertib 
and paclitaxel, but this improvement in PFS was not 
observed in PTEN-low patients in the LOTUS cohort 
[310, 312] or in a phase III randomized trial that tested 
the same combination of therapies in a similar group of 
TNBC patients [444].

Until recently, the only reliable predictive biomarker 
of sensitivity to most ATP-competitive inhibitors but 
not allosteric inhibitors, was the AKT1 E17K missense 
mutation, based on the results of a multi-histology basket 
study of capivasertib in patients with advanced gyneco-
logic, ER-positive breast cancer, and other solid tumors 
[445]. The number of AKT mutant alleles displaying 
sensitivity to ATP-competitive inhibitors (capivasertib) 
has now been expanded to include a slew of non-E17K 
(missense) activating AKT1/2 mutations, resulting from 
small in-frame duplications (indels) that induce struc-
tural conformations in AKT different from activating 
missense mutations and activate the PI3K-AKT pathway 
to a much greater degree. Cells with AKT in-del muta-
tions showed heightened sensitivity to ATP-competitive 
inhibitors compared to activating missense mutations, 
which showed a varied response to allosteric and ATP-
competitive inhibitors. Interestingly, cells expressing 
AKT1 and AKT2 in-del mutants were resistant to allos-
teric inhibitors, likely due to the structural displacement 
of this drug class at the PH-kinase interface induced by 
the in-del mutation. In an agnostic clinical trial initiated 
by the same investigators, it was found that patients with 
different tumor lineages harboring rare activating AKT1-
3 mutant variants, including but not limited to activating 
in-dels, responded to capivasertib, broadening the list of 
biomarkers that predict sensitivity to ATP-competitive 
inhibitors [446].

The real challenge lies in identifying isoform-specific 
substrates that can be utilized not only as targetable bio-
markers but also to predict isoform treatment sensitivity 
and gauge treatment responses. This would also enable 
the understanding of how targeting the PI3K-AKT path-
way affects upstream receptor and non-receptor tyrosine 
kinases, PI3K isoform, and AKT isoform activity in the 
case of therapeutic resistance, for example. However, this 
is no easy feat.

A successful example of biomarker-driven AKT thera-
peutics is the recent breakthrough by Craven et al. who 
showed that the  mutant lysine in AKT1 E17K can be 
targeted by a covalent allosteric salicylaldehyde-based 
inhibitor that recruits endogenous  Zn2+; by sparing 
collateral AKT2 inhibition, it is anticipated that this iso-
form-specific and mutant-selective inhibitor will result in 
decreased side effects, including hyperglycemia, in 
patients [448].
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Conclusions and future perspectives
It is the authors’ opinion that the war on hyperactivated 
AKT in cancer will be best waged in the future using a 
combination of AKT degraders, preferably those with 
isoform-selectivity, in a cancer-type and context-specific 
manner, and immunotherapy, in the form of CAR-T cell 
therapy (with ex vivo manipulation of CAR-T cells by tar-
geting specific isoforms), or immune checkpoint inhibi-
tors, which, in theory, can subdue tumor cells and boost 
tumoral immunogenicity by overriding the immunosup-
pressive TME. However, we still have many hurdles to 
cross before this can be made a reality. In addition, the 
advancement of drugs, such as capivasertib, to phase III 
trials means that AKT inhibitors, despite their short-
comings, have the potential to have a positive impact on 
breast cancer and potentially other cancer types and offer 
a glimmer of hope to patients living with the disease, who 
will now be able to reap the benefits of this drug. Just 
recently (November 16, 2023), the FDA approved capiv-
asertib (Truqap, AstraZeneca Pharmaceuticals) with 
fulvestrant for adult patients with HR-positive, HER2-
negative locally advanced or metastatic breast cancer 
with one or more PIK3CA/AKT1/PTEN alterations, as 
detected by an FDA-approved test, following progression 
on at least one endocrine-based regimen in the meta-
static setting or recurrence on or within 12  months of 
completing adjuvant therapy. In addition, we believe that 
the recent development of a mutant-specific allosteric 
inhibitor will be a game-changer in the field of AKT ther-
apeutics. Thus, despite the many challenges, the future of 
AKT inhibitors in the oncology clinic is bright.
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