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Abstract 

Background  Patient-derived organoids (PDOs) from advanced colorectal cancer (CRC) patients could be a key plat‑
form to predict drug response and discover new biomarkers. We aimed to integrate PDO drug response with multi-
omics characterization beyond genomics.

Methods  We generated 29 PDO lines from 22 advanced CRC patients and provided a morphologic, genomic, and 
transcriptomic characterization. We performed drug sensitivity assays with a panel of both standard and non-standard 
agents in five long-term cultures, and integrated drug response with a baseline proteomic and transcriptomic charac‑
terization by SWATH-MS and RNA-seq analysis, respectively.

Results  PDOs were successfully generated from heavily pre-treated patients, including a paired model of advanced 
MSI high CRC deriving from pre- and post-chemotherapy liver metastasis. Our PDOs faithfully reproduced genomic 
and phenotypic features of original tissue. Drug panel testing identified differential response among PDOs, par‑
ticularly to oxaliplatin and palbociclib. Proteotranscriptomic analyses revealed that oxaliplatin non-responder PDOs 
present enrichment of the t-RNA aminoacylation process and showed a shift towards oxidative phosphorylation 
pathway dependence, while an exceptional response to palbociclib was detected in a PDO with activation of MYC 
and enrichment of chaperonin T-complex protein Ring Complex (TRiC), involved in proteome integrity. Proteotran‑
scriptomic data fusion confirmed these results within a highly integrated network of functional processes involved in 
differential response to drugs.

Conclusions  Our strategy of integrating PDOs drug sensitivity with SWATH-mass spectrometry and RNA-seq 
allowed us to identify different baseline proteins and gene expression profiles with the potential to predict treatment 
response/resistance and to help in the development of effective and personalized cancer therapeutics.
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Background
Colorectal cancer (CRC) is the third most common and 
second deadliest cancer [1]. Even when diagnosed at early 
stage, 30–50% of patients will experience relapse and 
die of the disease [2]. Whether relapsed or diagnosed as 
stage IV disease, survival has significantly improved over 
the last ten years, going from 6 to more than 30 months 
median overall survival [3]. However, despite improve-
ments in cancer therapy, resistance to chemotherapeutic 
and novel targeted therapies limits treatment success.

In light of the increasing notion of CRC molecular 
complexity, the role of useful preclinical models for pre-
dictive biomarkers and new drug discovery is gaining 
importance. Furthermore, there is an urgent need to go 
beyond genomics, as its utility to guide therapy has been 
less successful than anticipated [4]. Indeed, the presence 
of a molecular alteration at the genomic level does not 
automatically predict treatment response, as multiple 
factors can influence response in each individual patient 
to a greater or lesser extent [5].

Functional testing using human-derived cancer models 
offers a valuable complementary approach to help in per-
sonalizing treatments. Patient-derived organoids (PDOs) 
are employed to fill the gap left by traditional preclinical 
models. They recapitulate the biology of original tumor 
tissue, including therapy response [6], and can be rap-
idly generated for many cancer types [7–10] with a lower 
cost than animal models. A great number of PDO models 
have been generated for CRC [6, 11–13]. However, the 
evidence obtained until now with these models comes 
mainly from cultures deriving from primary tumors, 
while data obtained from metastatic samples are less 
consistent.

Understanding the phenotypic alterations that play 
a role in differential response to drugs will be pivotal in 
identifying predictive biomarkers and developing effica-
cious therapies for advanced CRC. The bulk of research 
to date has focused on the value of organoids as a pre-
dictive tool [6, 12, 14]; some have characterized the tran-
scriptomic profile in relation to drug sensitivity [13, 15] 
in an effort to identify predictive biomarkers, but only a 
limited number of studies have used quantitative prot-
eomic analysis to characterize PDOs [16, 17]. Extensive 
literature indicates that transcriptomic and proteomic 
expression profiles lack correlation due to significant 
post-transcriptional regulation, which could explain why 
RNA signatures are rarely useful as drug response predic-
tors in the clinic [18].

In this study we generated PDO models from advanced 
CRC patients including heavily pre-treated patients and 
a model of microsatellite unstable- (MSI) high CRC, for 
which pre- and post-chemotherapy liver disease PDOs 
were established and characterized to ensure biological 
fidelity with the original tumors. Our main objective was 
to integrate functional drug assays conducted on PDOs 
with proteotranscriptomic study to explore the mecha-
nisms underlying drug response. To this end, we used 
SWATH-MS (sequential window acquisition of all theo-
retical mass spectrometry), a highly accurate proteomic 
quantification technique and a bulk RNA-sequencing 
analysis and performed an integrative functional net-
work analysis of both omics. This strategy could repre-
sent a useful tool to discover new therapeutic targets in 
advanced CRC and to guide personalized therapies.

Methods
Tissue processing and organoid culture
Locally advanced or metastatic colorectal samples were 
collected after patients had signed written informed 
consent at Hospital Clínico Universitario de Valencia 
(HCUV). The HCUV Ethics Committee (EC) approved 
the study (2018/063, 2021/083). Samples were collected 
at surgery or with image-guided tissue biopsy. Both naïve 
and pre-treated patients were included.

Fresh tissues were collected in PBS with antibiotics 
and quickly processed as follows. After serial washings 
and antibiotic incubation, tissue samples were minced in 
small fragments. Some of them were stored for DNA and 
RNA extraction depending on the total amount of tis-
sue. All the remaining fragments were mechanically and 
enzymatically digested with a collagenase-based solu-
tion (Sigma-Aldrich, cat. No. 269395). Subsequently, the 
resulting digestion solution was filtered, single cells were 
counted, resuspended in basal media with 50% reduced-
growth factor basement membrane matrix (BME Type 
2, R&D, cat. No. 3533–010-002), plated in prewarmed 
culture plates and stored at 37 °C. After the formation of 
domes, complete medium was added.

Complete medium composition was as follows: 
1 × N2 (cat. No. 17502048), 1 × B27 (cat. No. C21-H), 
1  mM  N-acetyl L-cysteine (cat. No. A9165), 10  mM 
nicotinamide (cat. No. N0636), 50  ng/mL hEGF (cat. 
No. BMS320), 100 ng/mL hNoggin (cat. No. 6057-NG-
025), 0.5  mM A-83–01 (cat. No. SML0788), 10  mM 
SB202190 (cat. No. S7067), 10  nM gastrin (cat. No. 
G9145), 500 ng/mL hRSPO1 (cat. No. 4645-RS), 10 ng/
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mL hFGF10 (cat. No. 100–26), 10  nM PGE2 (cat. No. 
P6532), 10 mM Y-27632 (cat. No. Y0503).

Medium was changed three times a week. Organoid’s 
formation was observed in a fraction of cultures (see 
Results section). After reaching appropriate volume 
organoids were trypsinized with TrypLE™ Express (Life 
Technologies, cat. No. 12605–010) to expand them. 
Aliquots were stored in liquid nitrogen to constitute a 
Biobank.

All samples were named with a codified nomencla-
ture indicating the site of biopsy (metastasis or primary) 
and with a serial progressive number: metastatic colon 
tumor organoid (mCTO), metastatic colon tumor tissue 
(mCTT), rectal tumor organoid (RTO) rectal tumor tis-
sue (RTT) colon normal organoid (CNO) and colon nor-
mal tissue (CNT). Collectively, all models are referred as 
patient-derived organoids (PDOs).

Morphologic characterization
PDOs domes were collected in 4% neutral buffered for-
malin and paraffin embedded (FFPE). 4 mm slides were 
cut, dewaxed and hematoxylin and eosin staining (Dako, 
cat. No. CS700 and CS701) was performed. For IHC 
sodium citrate antigen retrieval was performed (Tar-
get Retrieval Solution, Citrate pH 6, S236984-2 and pH 
9, S236784-2), followed by peroxidase blocking (Dako-
REAL™, Dako, cat. No. S2023) and by incubation with 
the following primary antibodies in EnVision FLEX anti-
body diluent (Dako, cat. No. K8006): Ki67 (Dako, cat. 
No. IR626, ready to use), CDX2 (Dako, cat. No. IR080, 
ready to use), CK20 (Dako, cat. No. IR777, ready to use). 
In some PDOs the following additional stainings have 
been perfomed: ERBB2 (Roche, cat. No. 790–2991, 4B5 
clone), PTEN (Dako, cat. No. M3627, 1:50). Peroxidase-
conjugated secondary antibodies were used (EnVision 
Flex/HRP, Dako, cat.no. GV82311-2). The slides were also 
counterstained with hematoxylin.

Mismatch repair proteins MLH1 (Dako, cat. No. 7R079, 
ready to use), PMS2 (Dako, cat. No. 7R087, ready to use), 
MSH2 (Dako, cat. No. IR086, ready to use), MSH6 (Dako, 
cat. No. IR085, ready to use), PDOs’ staining was per-
formed when clinical data indicated that the patient had 
a loss of expression of these proteins.

The same procedures were performed also for FFPE tis-
sue sections. All slides from both PDOs and tissues were 
independently reviewed by dedicated pathologists.

Genomic characterization
Fresh tissues and PDOs DNA was extracted with the 
QIAamp DNA Micro Kit (Qiagen, cat. No. 56304) 
to perform both targeted next-generation sequenc-
ing (NGS) and copy number variation analysis with 

CytoScan HD. NGS was performed using OncoSpot 
v1, an in-house customized 87-gene panel [19]. A mini-
mum of 80 ng of DNA was used for library preparation, 
using KAPA HyperPlus Library Preparation (Roche 
Diagnostics). Libraries were paired-end sequenced in 
an Illumina MiSeq platform with a MiSeq Reagent Kit 
v2 (300-cycles) kit.

Read quality control was performed with FASTQC 
v0.11.8 (available online at: http://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/). Sequencing adapters 
and low-quality reads were filtered out with fastp v0.11.8 
[20]. Filtered reads were aligned against the human ref-
erence genome GRCh38 with BWA-mem v0.7.17 (Li, H. 
(2013). Aligning sequence reads, clone sequences and 
assembly contigs with BWA-MEM. arXiv: Genomics). 
PicardTools v2.18.6 (http://​broad​insti​tute.​github.​io/​pic-
ard) was applied to eliminate duplicated reads. A combi-
nation of LoFreq v2.1.3.1 [21] and Mutect2 v 4.0.5.0 [22] 
was used to call variants for individual patients. Variants 
were merged with vcftools [23] and normalized to avoid 
multi-allelic positions with BCFtools [24]. Then, variants 
were functionally annotated using Variant Effect Predic-
tor v96 [25]. Additional information was added from the 
Cancer Hotspot database [26] and a proprietary can-
cer mutation database containing information from dif-
ferent resources such as PCT MDAnderson database 
(https://​pct.​mdand​erson.​org), commercial cancer panels 
(Oncomine® and Sequenom), relevant literature and our 
own expertise. Variants with a depth of coverage greater 
than 100 × and an allelic fraction of 5% or higher were 
reported. Pathological variants were selected if present 
in our proprietary database or located in a cancer hot-
spot with a population frequency below 1%. Discordant 
results and low VAFs were manually curated with IGV, 
v. 2.9.4. Pathogenic variants were summarized using the 
ComplexHeatmap (v2.4.3) R package [27]. Data available 
after acceptance.

For copy-number analysis, hybridization-based 
genomic profiling was performed using CytoScan HD 
Array (Affymetrix, CA, USA) according to manufac-
turer’s protocol. CytoScan HD CEL files were processed 
through Chromosome Analysis Suite (ChAS) software 
version 4.1 with a single sample algorithm. All samples 
were manually reviewed, and unbalanced samples were 
reprocessed with normal diploid algorithm. Obtained 
Chyp files were analyzed with ChAS and IGV software v. 
3.0. Copy number and loss of heterozygosity (LOH) data 
were retrieved for further analysis.

RNA‑sequencing analysis (RNA‑seq)
Total RNA was extracted from fresh tissues and PDOs 
with RNeasy Micro Kit (cat. no. 74004) and integrity ver-
ified with TapeStation RNA Analysis ScreenTape (Agilent 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://pct.mdanderson.org
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Technologies). Sequencing libraries were prepared with 
the NEBNext® Ultra (TM) II Directional RNA Library 
Prep Kit for Illumina® Module (New England BioLabs) 
and NEBNext Poly(A) mRNA Magnetic Isolation Mod-
ule for mRNA enrichment following the manufacturer’s 
instructions. Libraries were paired end sequenced in an 
Illumina NextSeq 550 platform with a NextSeq 500/550 
High Output 300 cycles kit.

Sequence quality control was performed as in gene 
panels. Filtered reads were mapped against the human 
reference GRCh38 genome using STAR v2.7.3a [28]. Iso-
form quantification was performed with RSEM v1.3.3 
[29] and further processed with Tximport v1.16.1 [30] to 
summarize counts per gene. Differential expression anal-
ysis was conducted with the DESeq2 v1.28.1 package [31] 
using an adjusted p-value cutoff of 0.05.

Gene-set enrichment analysis (GSEA) analysis [18] was 
run against the hallmark gene sets from the Human 
Molecular Signatures Database (MSigDB). The signifi-
cance threshold was set at P-value below 0.05 and nomi-
nal false discovery rate (FDR) below 0.05.

To determine the agreement between gene expression 
in tumor tissues and their derived organoids, first stro-
mal genes described in Isella et al. [32] and non-protein 
coding genes were removed. To minimize the effect of 
the artificial environment in which organoids are grown, 
differentially expressed genes between tumor tissues and 
organoids were identified with DESeq2 and filtered out. 
The remaining genes were used to calculate Pearson cor-
relation coefficients between organoids and tissues and 
were plotted in a heatmap along with an unsupervised 
hierarchical clustering using the heatmap v1.0.12 R pack-
age (https://​CRAN.R-​proje​ct.​org/​packa​ge=​pheat​map).

Droplet‑digital PCR
DNA from PDOs was digested with the restriction 
enzymes Mse I (TakaRa, cat. No. 1247A) and Hae III 
(TakaRa, ca. no. 1051A). PCR droplets were gener-
ated using the QX200 droplet generator (Bio-Rad), 
and the PCR reaction was run in a C1000 Touch 
thermal cycler (Bio-Rad) according to the manu-
facturer’s protocol. Results were analyzed with the 
QuantaSoft software (Bio-Rad). The following probes 
have been purchased from Bio-Rad: ERBB2 (cat. No. 
dHsaCP1000116), TP53 (cat. No. dHsaCP1000586), 
AURKA (cat. No. dHsaCNS193384431), CDKN2A (cat. 
No. dHsaCP1000581), FGFR1 (cat. No. dHsaCP2500319), 
MET (cat. No. dHsaCP2500321), SMAD4 (cat. No. 
dHsaCP2500468). AGO2 was used as a reference assay 
(cat. No. dHsaCP2500349). DNA from fresh normal 
mucosa tissue was used as diploid control sample.

Proteomics analysis by LC–MS/MS‑SWATH
Sample preparation
PDOs pellets were lysed in UTC buffer (7 M urea, 2 M 
thiourea and 4% CHAPS) and the protein concentra-
tion was measured with the RC DC Protein Assay (Bio-
Rad). A pooled sample containing 5  µg of protein from 
each sample was used to prepare the peptide library. For 
the SWATH analysis, 20 µg of protein from each sample 
were used. Samples were denatured at 95  °C for 5  min 
in sample buffer and subjected to sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS-PAGE). 
Pooled samples were resolved in gel and lanes were cut 
into five pieces. Gels containing individual samples were 
not resolved and whole samples were sliced into a single 
piece. Protein digestion and subsequent analysis were 
performed as published elsewhere [33] on Proteomics 
Service (SCSIE) of the University of Valencia.

LC–MS/MS
Spectral peptide library was obtained by liquid chroma-
tography and tandem mass spectrometry (LC–MS/MS) 
analysis, operating the instrument in a data-dependent 
acquisition mode. Peptide mixtures were loaded onto a 
trap column (3 µ C18-CL, 350  μm × 0.5  mm; Eksigent) 
and desalted with 0.1% TFA at 5 µl/min for 5 min. Pep-
tides were then loaded onto an analytical column (3 µ 
C18-CL 120 Ᾰ, 0.075 × 150  mm; Eksigent) equilibrated 
in 5% acetonitrile 0.1% FA (formic acid). Elution was 
carried out with a linear gradient of 7 a 40% buffer B in 
A (A: 0.1% FA; B: 5% acetonitrile (ACN), 0.1% FA) at a 
flow rate of 300 nL/min over 60  min. Eluted peptides 
were analyzed in a mass spectrometer nanoESI-qQTOF 
(TripleTOF 6600; SCIEX). Up to 100 ions were selected 
for fragmentation after each survey scan. Data files were 
processed using the ProteinPilot search engine (ver-
sion 5.0, SCIEX) to search the Swiss-Prot database with 
the following parameters: Trypsin specificity, IAM cys-
alkylation, Species Homo sapiens, and the search effort 
set to through and FDR correction.

Quantitative analysis of individual samples was per-
formed by sequential window acquisition of all theo-
retical spectra-mass spectrometry (SWATH-MS). 
Peptides were analyzed by LC using a trap column and 
analytical column as previously described but operat-
ing the TripleTOF 6600 mass spectrometer instrument 
in SWATH mode. We used 100 variable windows from 
400 to 1250 m/z with a total cycle time of 2.79 s. Quan-
titative data was extracted from.wiff files with Peak View 
2.2 (SCIEX) using the peptide library generated by Pro-
teinPilot as indicated above. For every protein in the 
spectral library, a maximum of 20 peptides were quanti-
fied among those with a 95% confidence threshold and 
an FDR lower than 1%. Shared peptides were excluded. 

https://CRAN.R-project.org/package=pheatmap
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For every peptide, a maximum of 6 transitions (frag-
ment ions) were quantified. All proteins contained in the 
library were monitored in all samples, producing com-
plete quantitative matrices.

Data analysis
SWATH quantitative data (protein areas) were median 
normalized and Log2 transformed. Principal component 
analysis (PCA) was performed with the Orange data min-
ing toolkit to inspect sample grouping and similarity. Dif-
ferentially expressed proteins were selected by Student 
t-test using a p-value of 0.05. Functional analysis of dif-
ferential proteins was performed using STRING database 
[34] and Cytoscape StringApp [35] within Cystoscape 
software [36].

Proteotranscriptomic data integration
Differential proteins identified by RNA-seq and proteom-
ics were pooled in a single protein list with unique Uni-
Prot accession codes. Functional analysis of differential 
proteins was performed using STRING database [34] and 
Cytoscape StringApp [35] within Cystoscape software 
[36]. To select the most relevant interactions, only high 
(score 0.7) and highest (score 0.9) confidence interac-
tions were used for oxaliplatin and palbociclib datasets, 
respectively. A large network of interacting proteins was 
observed in each dataset containing about 30 (oxalipl-
atin) and 45 (palbociclib) % of proteins. The networks 
were further characterized by performing a functional 
enrichment analysis of the main modules observed. In 
the case of palbociclib dataset, a part of the network, 
containing mainly metabolic proteins, has a more diffuse 
appearance. In order to gain some information regarding 
the main metabolic pathways included in this part of the 
network, their proteins were clustered using the MCL 
algorithm within StringApp using a Granularity parame-
ter of 2. A functional enrichment analysis was performed 
on the resulting clusters containing 4 or more proteins. 
In addition, the metabolic proteins were mapped into 
KEGG Metabolic pathways (hsa01100).

Western blot analysis
To verify some of the differentially expressed proteins 
only detected by proteomics, we performed a Western 
Blot analysis. We followed a previously published pro-
tocol [37]. Briefly, whole-cell protein extracts were pre-
pared using RIPA buffer (50  mmol/L Tris–HCl pH 7.5, 
150  mmol/L NaCl, 0.1% SDS, 1% Triton x-100, 0.5% 
deoxycholic acid sodium salt (w/v)) supplemented with 
2 μL/mL protease inhibitor cocktail (Sigma) and 10 μL/
mL phosphatase inhibitor cocktail (Sigma). Samples were 
sonicated and centrifuged at 14,000 × g speed for 20 min 

at 4  °C. The protein concentration was quantified by 
BCA protein assay kit (Thermo Scientific). 20ug of total 
protein were loaded per well on 12% SDS-PAGE, trans-
ferred onto a nitrocellulose membrane and incubated 
with the following primary antibodies from Santa Cruz: 
anti-TCP1 (Cat. No. sc-374088), anti-CCT2 (Cat. No. 
sc-374152) and anti-CCT8 (Cat. No. sc-377261). Immu-
noreactive bands were recognized using peroxidase-con-
jugated secondary antibody (DAKO). Immunoblots were 
visualized using the “ECL Western Blotting detection 
kit” reagent (GE Healthcare) and the ImageQuant LAAS 
400 (Healthcare Bio-Sciences) system. Quantification of 
detected bands was carried out using ImageJ.

Drug assays
PDOs were trypsinized till single cells, plated in 50% 
BME domes with complete medium in 96-well plates and 
48  h later, after having observed the formation of orga-
noids, treated with increasing doses of different drugs. 
5-Fluorouracil and oxaliplatin were kindly provided by 
HCUV Pharmacy. The following drugs were purchased 
from Selleck: SN-38 (cat. No. S4908), erlotinib (cat. No. 
S7786), trametinib (cat. No. S2673), tepotinib (cat. No. 
S7067), erdafitinib (cat. No. S8401), TAS-102 (cat. No. 
S8539), alpelisib (cat. No. S2814), palbociclib (cat. No. 
S1579), olaparib (cat. No. S1060), GSK458 (cat. No. 
S2658), birabresib (cat. No. S7360), AZD6738 (cat. No. 
S7693), regorafenib (cat. No. S1178). After 120 h of treat-
ments, CellTiterGlo 3D (Promega, cat. No. G9681) via-
bility assay was performed following the manufacturer’s 
instructions. All experiments were performed with three 
technical replicates and with at least two independent 
biological experiments. Area under the curve (AUC) was 
calculated with trapezoid rule. Statistical analysis and 
graphical representation were performed with GraphPad 
Prism software v. 8.2.1. Experimental replicates of drug 
screening were compared with one-way ANOVA assum-
ing a p < 0.05 as statistically significant and represented 
as linear regression. For each drug a pattern was assem-
bled containing the corresponding Ln-AUCs across the 
treated organoids. Next, Z-scores were calculated for 
each drug, considering median Ln-AUC and standard 
deviation for each point (LnAUC-mean/standard devia-
tion). Finally, the patterns were aggregated column-wise 
into a matrix. The obtained matrix was used to assess the 
relative sensitivity/resistance of each organoid line.

Results
PDOs can be established from pre‑treated advanced 
colorectal cancer patient samples
A total of 34 patients with advanced CRC were included 
in the present study between November 2018 and 
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November 2020, and 50 samples were collected, mainly 
from liver metastasis. The primary tumor was biopsied 
only when metastases were not accessible. In the pres-
ence of more than one liver metastasis, a sample was 
taken from each one. We included both naïve and heav-
ily pre-treated patients. Organoids’ growth was observed 
in 29 lines from 22 patients, with an overall success rate 
of 59%. All sample characteristics are shown in Supple-
mentary Table S1. Most biopsies were performed at sur-
gery. PDOs establishment was successful in 90% of cases 
without chemotherapy during the previous 6  months, 
dropping to 51% if preoperative chemotherapy had been 
administered, although the difference was not statisti-
cally significant. The PDOs’ establishment rate was not 
affected by primary tumor location (PTL, left vs. right 
vs. rectum), tissue biopsy site (primary vs. metastasis), 
or RAS/RAF mutational status. In 19 samples from 12 
patients no organoids could be grown, this culture failure 
owing mainly to lack of initial growth, arrested growth 
or initial contamination. We observed heterogeneous 
growth behavior among our PDOs. Some could be estab-
lished as long-term cultures (more than 3 months in cul-
ture and over 10 passages) while some others could only 
grow as short-term cultures (1–3 months in culture and 
1–9 passages) [38] (Supplementary Fig. S1). Long-term 
cultures displayed an exceptional capacity for multiple 
freeze thaw cycles. No specific molecular features were 

identified as predicting long-term versus short-term cul-
ture establishment.
PDOs recapitulate morphology and immunohistochemistry 
and could be derived from tissues with low cellularity
PDOs were stained with hematoxylin and eosin (H&E) to 
show cellular architecture, which faithfully reproduced 
the morphology seen in culture (Fig.  1A, top and mid-
dle panel). Cellular architecture presents similarities with 
corresponding tissues (Fig. 1A, bottom panel).

To elucidate whether tumor cell percentage could 
impact on the capacity to obtain organoids, each tissue 
section destined for organoid culture was revised by a 
dedicated pathologist. A cut-off of 30% tumor cells was 
applied to classify our samples. Our data indicate that 
PDOs can be grown independently of tumor cell propor-
tion found in the original tissue (two-tailed Fisher’s exact 
test p = 0.4568, Fig. 1B).

IHC staining shows that PDOs are positive for CDX2 
and CK20, intestinal markers that are both employed in 
standard diagnosis of CRC (Fig. 1C). The only exception 
was seen in mCTO66S3, which tested CK20 negative. 
The original tissue displayed weak and parceled expres-
sion, with most cells clearly negative (Supplementary Fig. 
S2). Indeed, loss of CK20 expression may be considered a 
negative prognostic marker in some settings [39]. CDX2 
and CK20 expression of corresponding tissues is showed 
in Supplementary Fig. S2, where a weak expression of 

Fig. 1  PDOs recapitulate morphologic features of original tissue and can be obtained from low cellularity biopsies. (A) Culture images of some 
PDOs lines (top panel; scale bar 50 μm, 20X), compared with corresponding H&E staining (hematoxylin and eosin) (middle panel; scale bar 50 μm, 
20X) and with matched tissue stained with H&E (bottom panel; scale bar 100 μm, 10X). (B) Corresponding percentage of tumor cells assessed as 
percentage of neoplastic cells with respect to the total amount of viable cells in the tissue sample from which the culture was derived, assessed 
by the pathologist. (C) IHC for CDX2 and CK20 antibodies in a selection of PDOs. CNO75 is a normal mucosa organoid from a CRC patient, used as 
control for both markers. (Scale bar 50 μm, 20X). (D) Lack of expression of MLH1 and PMS2 in a core biopsy from a liver metastasis of patient 50 and 
its corresponding derived PDOs. RTO2 is a pMMR model used as positive control. (Scale bar 50 μm, 20X). T: tissue



Page 7 of 22Papaccio et al. J Exp Clin Cancer Res            (2023) 42:8 	

CK20 and no CDX2 staining in mCTT47 was observed, 
probably due to low cellularity, high level of fibrosis and 
intratumoral heterogeneity. On the other hand, our PDO 
mCTO50 and mCTO50B, derived from a patient with 
MSI high showed lack of expression of MLH1 and PMS2 
proteins, as was seen in the original tissue (Fig. 1D, Sup-
plementary Fig. S2).

PDOs recapitulate the genomic and transcriptomic profile 
of the original tumor
To genomically compare organoids and their original 
tissues, we employed NGS analysis using a customized 
panel [19]. A high correlation was found regarding ger-
mline variants, single nucleotide variants (SNVs), short 
insertions and deletions (r > 0.8, p < 0.0001, Supplemen-
tary Fig. S3A-B). The percentage of tumor cells, necro-
sis, mucinous proportion, and tumor stroma ratio were 
calculated by a dedicated pathologist. These indices did 
not interfere with the ability of PDOs to reproduce the 
original tissue genomic profile (Supplementary Fig. S3C), 
except when low cellularity was present (Supplementary 
Fig. S3B).

As expected, the most prevalent mutations affected 
TP53, KRAS and APC (Fig.  2A), and besides these, 
PIK3CA, PTEN and SMAD4 mutations were also 
detected, encompassing all relevant mutations in CRC. 
The main driver oncogenic mutations and hotspot vari-
ants are represented in Table 1. In most cases, allelic frac-
tion (AF) was higher in PDOs (paired t test, p < 0.0001), 
reflecting their enrichment in epithelial cells. Moreover, 
CytoScan HD SNP-array was conducted on PDOs and 
matched fresh tissue to detect copy number alterations 
and LOH. Likewise, PDOs recapitulate the overall copy 
number variation profile, and are significantly enriched 
(Fig.  2B). CytoScan results were validated by ddPCR 
(Supplementary Fig. S3D).

RNA-seq was also performed to compare gene expres-
sion between PDOs and corresponding tissue and to 
analyze whether it was stable over time in culture. This 
is a key issue, considering PDOs as in  vitro “avatars” of 
patient tumors. Three biological replicates deriving from 
distinct culture passages were employed for each orga-
noid line, except for RTO2 and RTO7 for which two rep-
licates were employed, due to technical issues. Overall, 

Fig. 2  PDOs recapitulate genomic and transcriptomic profile of original tissues. (A) Concordance of SNVs and InDels between PDOs and 
corresponding tissues. On the left percentage of genomic alterations detected across the study subjects. (B) Whole Genome View representation 
of long-term PDOs and corresponding tissues according to Cytoscan HD. Data is expressed as the weighted log2 ratio of the copy number on the 
left Y-axis, and the chromosome number on the X-axis. 0 corresponds to diploid, upper and lower spikes indicate gain and loss regions, respectively. 
mCTO50 tissue was not available. (C) Heatmap showing the Pearson correlation coefficient (color key) between tumors (rows) and organoids 
(columns) based on the normalized counts as described in materials and methods section. Dendrograms show the hierarchical clustering based on 
the complete method and Euclidean pair-wise distance. Different passages from the same organoid culture are included
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PDOs and tissues cluster separately because of the co-
existence of more cell types in tissues and stromal genes 
(Supplementary Fig. S3E). However, narrowing down the 
analysis to non-stromal genes contribution (supplemen-
tary methods), significant expression correlation can be 

observed between each PDOs line and its correspond-
ing tissue (Fig. 2C). The two exceptions were mCTO50B 
and mCTO47, which were derived from a tissue with low 
cellularity (less than 10%). Interestingly, PDOs from dif-
ferent passages exhibit a similar gene expression profile, 
indicating that the influence of culture condition is mini-
mal and that this profile is stable over time.

PDOs show differential anti‑tumor response to standard 
and experimental treatments
To study whether PDOs could be an appropriate model 
to assess differential response to standard therapies, 
we exposed our long-term models to several approved 
drugs. The reproducibility of drug treatment results in 
PDOs was confirmed across several experiments (Sup-
plementary Fig. S4A). Table  2 summarizes the clinical 
and molecular characteristics of patients whose models 
were used.

All the established PDOs exhibited a heterogeneous 
response to chemotherapy (Fig.  3A). As an example, 
mCTO50B (a PDO obtained after chemotherapy) had 
a worse response than mCTO50, which was generated 
from the initial tumor before any therapy was given, so 
the former could represent a potential model of chemo-
resistant disease.

SN-38 (the active metabolite of irinotecan) was highly 
active in  vitro, and only RTO2 displayed lower sensi-
tivity compared to the other lines in our panel. Add-
ing oxaliplatin to 5-FU resulted in a general decrease in 
PDOs viability (Supplementary Fig. S4B). Along these 
lines, combination with SN-38 seemed to be more effec-
tive than single agent exposure (Supplementary Fig. S4B, 
not statistically significant). Anti-EGFR treatment with 
erlotinib showed modest activity in all lines, includ-
ing the RAS wild type RTO7 PDO. Regorafenib also 
showed modest in  vitro activity, whereas trifluridine/
tipiracil (TAS-102) was more active in all PDOs except 
mCTO66S3 (Supplementary Fig. S4C). A matrix repre-
sentation of normalized Z-score Ln-AUCs (Fig. 3B) iden-
tifies relative resistance/sensitivity to a single drug among 
different PDOs.

To further explore sensitivity to other anti-cancer 
agents, our PDOs were exposed to different drugs not 
currently included in the standard of care for advanced 
CRC. Agents targeting pathways altered in our mod-
els were selected. Response was matched with genomic 
alterations in all models (Fig.  3C-D). Differential 
responses were seen for palbociclib, trametinib, alpe-
lisib, the BET inhibitor birabresib (Fig. 3C). For example, 
RTO7 showed a dramatic response to palbociclib, a selec-
tive inhibitor of CDK4/6 kinases, in comparison with the 
other PDOs, particularly RTO2 and mCTO66S3. Consid-
ering genomic data, the lower responder mCTO66S3 has 

Table 1  Allelic fraction (AF) distribution in PDOs and matched 
tissues of main driver, hotspot and not hotspot mutations with 
potential relevance. Each mutation has been manually reviewed 
in Integrative Genome Viewer (IGV). Only mutations with an AF 
of at least 5% in PDOs have been included

VAF Variant allele frequency

Patient Gene Mutation PDOs VAF Tissue VAF

mCTO8 BRAF p.D594G 0.5118 0.3675

mCTO19 TP53
KRAS
APC

p.R273C
p.G12S
p.E1309Dfs*4

0.4319
0.3282
0.1862

0.3766
0.356
0.1247

mCTO21 KRAS
MYC

p.G12D
p.T73P

0.4274
0.0975

0.2
-

mCTO24S2 PIK3CA
KRAS
APC

p.H1047R
p.G12D
p.Y935*

0.5056
0.5089
1

0.1642
0.1682
0.285

mCTO24S7 PIK3CA
KRAS
APC
MYC
CDKN2A

p.H1047R
p.G12D
p.Y935*
p.T73P
p.D74A

0.4852
0.4978
0.9965
0.0975
0.0898

0.1529
0.1935
0.3412
-
-

mCTO38S5 TP53
APC
FBXW7

p.R248W
p.Q1367*
p.R222*

0.9967
0.994
0.6828

0.5272
0.4723
0.2438

mCTO38S8 TP53
APC
FBXW7

p.R248W
p.Q1367*
p.R222*

0.9966
0.9933
0.5113

0.2991
0.3066
0.1531

mCTO43 TP53
APC

p.Y236H
p.Y935*

0.9975
0.9804

0.3309
0.2581

mCTO46 ERBB3
PIK3CA
KRAS
TP53

p.T355I
p.K111E
p.G12S
p.R273H

0.6528
0.5521
0.99
0.99

0.502
0.3632
0.4512
0.5022

mCTO47 TP53
MYC
GNAS
APC
EGFR

p.R213*
p.T73P
p.R201S
p.E1379Vfs*7
p.L833Gfs*63

0.9983
0.1158
-
-
-

-
-
0.0606
0.156
0.0895

mCTO50 TP53
PTEN
PIK3R1

p.G245S
p.K267Rfs*9
p.R348*

0.4752
0.9504
0.4696

na

mCTO50B TP53
PTEN
PIK3R1

p.G245S
p.L257V
p.K267Rfs*9
p.R348*

0.4893
0.1695
0.9511
0.4993

0.2895
0.0848
0.3198
0.1592

mCTO66S3 TP53
KRAS
APC

p.M237I
p.G12V
p.E1379*

0.988
0.4407
0.998

0.8701
0.4611
0.9554

RTO2 PIK3CA
KRAS
FBXW7

p.E545K
p.G12V
p.S582P

0.464
0.5106
0.4626

0.2827
0.3149
0.2964

RTO7 TP53
APC
SMAD4

p.C275Y
p.Y935*
p.P356S

1
0.4842
1

0.2904
0.1005
0.1742
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the higher copy number level of both CDK4 and CDK6, 
reported as a mechanism of resistance [40]. Additionally, 
RTO7 has the highest copy number of c-MYC, potentially 
indicating cell cycle activation [41–43]. Moreover, this 
line has a SMAD4 p.P356S missense variant, in a hot-
spot region with LOH, thus explaining the nearly 100% 
mutant allelic fraction (Table 1). Despite the lack of func-
tional validation, it is predicted to be oncogenic by sev-
eral databases, leading to a loss-of-function of the protein 
[44] and is associated with increased c-MYC activity 
[45]. Indeed, the high response to palbociclib observed 
in RTO7 certainly warrants further research, as all these 
data point to a “MYC-addicted” phenotype of RTO7.

The BET inhibitor birabresib (Fig. 3C, middle) showed 
good activity in all lines, particularly in SMAD4 loss 
RTO7 and mCTO66S3 (Fig. 3D, Supplementary Fig. S4D, 
S5A), confirming synthetic lethality via restoration of 
MYC inhibition [45]. MEK-inhibitor trametinib showed 
modest activity in all lines except for KRAS mutant 
RTO2 (Fig.  3C), while PI3Kα-inhibitor alpelisib showed 
modest activity in all PDOs except for a slightly more 
in PIK3CA mutant line RTO2 (Fig.  3C, upper right). 
Intriguingly, the PI3K-mTORC1/2 inhibitor GSK458 was 
significantly active, not only in PIK3CA mutant RTO2, 
but also in mCTO66S3 (Fig. 3C, lower right). In contrast, 
mCTO50B had a significantly worse response. Indeed, 
this PDO has a frameshift mutation of the PTEN gene 
(p.K267Rfs*9) reported as likely oncogenic in OncoKB™, 
and we showed that it leads to reduced gene expression 
and a loss of PTEN expression per IHC (Supplementary 
Fig. S5B). We also performed additional drug testing 
without observing relevant activity (Supplementary Fig. 
S4D).

PDOs differentially replicate patient response depending 
on the site of disease
To determine whether our PDOs would also repro-
duce patient response to treatment, we retrieved clini-
cal information and matched drug response observed 
for mCTO50 and RTO7 (Fig. 4), in which follow up data 
events were available. mCTO50 was generated from liver 

metastasis of a patient with MSI-high CRC before initiat-
ing any anti-tumor therapy. This patient received cytore-
ductive chemotherapy with FOLFOXIRI (a combination 
of 5-FU, leucovorin, oxaliplatin and irinotecan), pre-
senting appropriate tumor shrinkage and allowing liver 
metastases resection. When tumor response was tested 
in  vitro, mCTO50 was significantly more sensitive to 
5-FU and oxaliplatin than mCTO50B, which was gener-
ated from the remaining residual disease tissue obtained 
at surgery. The drug treatment effect in this PDO was 
comparable to that observed in the patient as mCTO50. 
The patient had disease progression shortly after sur-
gery, indicating that chemotherapy failed to exert a long-
term effect. A similar degree of sensitivity to irinotecan 
was observed in both PDOs, however, prompting us to 
hypothesize that resistance mechanisms to this drug 
were not yet established.

RTO7 exhibited a good response to irinotecan-based 
chemotherapy, received as part of the patient’s first 
line treatment regimen (Table  2). Conversely, patient 
response was poor (showing progression at first CT 
scan). The only concordant response observed was for the 
anti-EGFR agent and for TAS-102 (i.e. lack of response). 
However, it should be taken into consideration that the 
organoid line derived from the primary location rather 
than liver metastases, which could not be biopsied. This 
highlights the intrinsic biological heterogeneity of CRC 
and the need to biopsy metastatic sites in the context of 
translational studies.

Proteotranscriptomic analysis in PDOs in relation 
to oxaliplatin or palbociclib sensitivity
Our aim was to uncover functional correlates between 
baseline proteotranscriptomic expression and drug 
sensitivity in PDOs. To assess the steady-state protein 
abundance, a SWATH-MS based label-free quantitative 
proteomics analysis was performed as a more reproduc-
ible strategy in a translational context. The relative level 
of the 1157 proteins quantified in all samples (FDR < 1%) 
helped us to distinguish each PDO by principal com-
ponent analysis (PCA) (Supplementary Fig. S5C) and 

Table 2  Clinical and molecular characteristics of patients from which long-term cultures have been generated

M/F Male/female, PTL Primary tumor location, wt Wild type, PFS Progression-free survival, OS Overall survival, XELOX Capecitabine and oxaliplatin, FOLFIRI 
5-Fluorouracil and irinotecan, FOLFOX 5-Fluorouracil and oxaliplatin, FOLFOXIRI 5-Fluorouracil oxaliplatin and irinotecan, nr Not reached, NED No evidence of disease

ID sample M/F PTL RAS/RAF MSI/MSS Other mutations Line PFS (months) OS (months)

RTO2 F rectum KRAS MSS PIK3CA XELOX 18 nr

RTO7 M rectum wt MSS SMAD4 FOLFIRI cetuximab 3 11

mCTO50 mCTO50B F cecum wt MSI PTEN 1st FOLFOXIRI beva
2nd pembrolizumab

4
nr

nr

mCTO66S3 M rectum KRAS MSS upfront surgery – > first FOLFOX NED nr
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these were consistently reproduced at different culture 
passages. We focused on understanding the molecular 
mechanisms involved in sensitivity to palbociclib and the 
lack of response to oxaliplatin, where the most striking 
differences were observed among PDOs. Three biological 

replicates proceeding from different culture passages 
were used for each PDOs line.

RTO2, RTO7 and mCTO50 showed better response 
to oxaliplatin than mCTO50B and mCTO66S3 
(unpaired t-test p = 0.0038) (Fig.  3A). A proteomics 

Fig. 3  PDOs response to drug screening. (A) Log transformed dose–response curves in selected standard drugs and non-standard (C) drugs. (B) 
Z-score Ln-AUCs heatmap (red: no response; blue: good response) for standard treatment. (D) Z-score Ln-AUCs heatmap (red: no response; blue: 
good response) for non-standard treatment (lower panel), matched with genomic data. In the upper panel are depicted main gene mutations, in 
the following loss of heterozygosity (LOH) and in the last copy number variations
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analysis (Supplementary file S1) identified 95 differen-
tially expressed proteins (51 up-regulated, 44 down-
regulated) in non-responder compared to responder 
organoids. Among the proteins identified with the great-
est positive and negative fold change (Fig. 5A), we found 
several previously associated with oxaliplatin resistance. 
As an example, resistant PDOs showed higher levels 
of PRDX6, which is a negative regulator of ferroptotic 
cell death [46], a process that enhances CRC sensitiv-
ity to oxaliplatin [47]. Another up-regulated protein was 
ALDH9A1, a member of the ALDH family of proteins 
which are involved in aldehyde detoxification which in 
turn is associated with acquired chemoresistance in colo-
rectal cancer cells [48]. These same models exhibited 
lower levels of NDRG1, a replication stress response pro-
tein which can inhibit epithelial-mesenchymal transition 
(EMT), a process that has been associated with pheno-
types of chemoresistance [49], and of CDH17, which has 
been reported as a marker of good response to 5-fluoro-
uracil and oxaliplatin-based chemotherapy [50].

To gain insight into alternative mechanisms of oxali-
platin resistance, a functional protein–protein interac-
tion network of differentially expressed proteins was 

evaluated by STRING database (http://​string-​db.​org, 
version 11). Using a high confidence score, some inter-
esting interactions were identified, with some subclus-
ters remaining at the highest confidence score (Fig. 5A). 
Gene ontology (GO) analysis revealed an increase of pro-
teins related with translation in non-responder models, 
with an interesting subcluster enriched in tRNA-ami-
noacylation process that included different aminoacyl-
tRNA synthetase (ARSs) and an auxiliary protein AIMP2, 
joined to form the cytoplasmic multi-tRNA synthetase 
complex [MSC] [51]. Beyond their role in protein synthe-
sis, ARSs were related to the induction of unfolded pro-
tein response, which in turn was associated with escape 
from chemotherapy induced senescence [52].

Another enriched process in non-responder mod-
els was mitochondrial import, including among other 
proteins two subunits of the ATP synthase (ATP5A and 
ATP5B), a mitochondrial membrane protein complex 
mediating ATP synthesis, and citrate synthase (CS), 
one of the key enzymes in the tricarboxylic acid cycle 
(TCA), indicating a switch from a glycolytic based to a 
mitochondrial metabolism with oxidative phosphoryla-
tion (OXPHOS) as main source of energy. This could 

Fig. 4  Patient’s response matched with PDOs drug assays, RTO7 in the upper panel and mCTO50 in the lower panel. Each CT scan response 
evaluation is compared with corresponding treatment administered in the corresponding PDOs. ≠ means discordant response, = means 
concordant response. Mo(s): months in terms of progression-free survival; St: stage; FOLFIRI: 5-fluorouracil and irinotecan; FOLFOX: 5-fluorouracil 
and oxaliplatin; FOLFOXIRI: 5-fluorouracil, oxaliplatin and irinotecan; BSC: best supportive care; SD: stable disease; PR: partial response; PD: 
progressive disease; R1: microscopic residual tumor

http://string-db.org


Page 12 of 22Papaccio et al. J Exp Clin Cancer Res            (2023) 42:8 

represent a way for some cancer cells to repair platinum-
induced DNA damage more efficiently [53].

In the RNA-seq analysis, 597 differentially expressed 
genes were detected (Fig.  5B). GSEA study showed that 
non-responding PDOs were enriched in G2M check-
point, TGFbeta and DNA repair hallmarks (Fig.  5C), 
somewhat expected as regards oxaliplatin response. 
Indeed, it acts by inducing DNA adducts, therefore an 

increase in the capacity to repair damaged DNA could 
help the cancer cell to survive. A key moment of DNA 
repair occurs during G2 to M phase transition. In addi-
tion, TGFbeta contributes to oxaliplatin resistance in 
CRC [54]. We noted that non-responder PDOs showed 
enriched unfolded protein response and PI3K-Akt-
mTOR and mTORC1 signaling hallmarks (Fig.  5C). As 

Fig. 5  Proteotranscriptomic characterization of oxaliplatin responder lines in comparison with no-responder ones. (A) Network mapping of 
95 proteins showing the 4 sub-clusters composed of more than 3 proteins. Relevant proteins with no associations to others are represented as 
isolated nodes. Colors are depicted according to the protein abundance (log2ratio) compared to responder PDOs (left panel). Bar-chart of GO terms 
represented as percentage of annotated proteins using the same color coding (right panel). (B) Hierarchical clustering heatmap of differentially 
expressed genes per transcriptomic. (C) GSEA hallmarks analysis of RNA-seq data. NES: normalized enrichment score. FDR: false discovery rate. R: 
responder; NR: non responder
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previously indicated, the former could be involved in the 
escape from chemotherapy induced senescence [58].

After observing high sensitivity to palbociclib in 
RTO7 (unpaired t-test p = 0.0002), and to understand 
the molecular mechanisms involved in this, a compari-
son of protein expression profiles was made, revealing 
245 significantly changing proteins in RTO7 versus 
non-responder models (RTO2 and mCTO66S3) (Sup-
plementary file S1). Functional protein–protein inter-
action networks were evaluated using the STRING 
database with a highest confident score (Fig. 6A). Gene 
ontology (GO) functional enrichment analysis matched 
the largest identified cluster (55 of 111 proteins) to 
biological processes related to protein synthesis, fold-
ing and degradation, and with mRNA splicing process 
via spliceosome, with most of the proteins upregulated 
in our RTO7 PDO as a palbociclib- responder model 
(Supplementary Fig. S5). We identified a subcluster 
comprising all the eight proteins that form the T-com-
plex protein Ring Complex (TRiC) (Supplementary Fig. 
S5D), an essential eukaryotic molecular chaperonin 
that aids in the folding of ~ 10% of the proteome includ-
ing oncoproteins [55].

Other top processes included in the remaining clusters 
were related to regulation of cellular component organi-
zation, cell adhesion, and metabolic processes, among 
others (Fig. 6A). All these processes point towards a high 
proliferative phenotype supported by the up regulation of 
different mechanisms that preserve proteome integrity.

Transcriptional-wide changes were also observed 
in palbociclib sensitive model (Fig.  6B). GSEA analy-
sis showed that RTO7 is enriched in MYC targets hall-
marks, fatty acids and lipid biosynthesis (which together 
are a consequence of MYC activation [56]) and unfolded 
protein response (Fig.  6C), a process that indicates an 
alteration of protein homeostasis. In the latter hallmark, 
NPM1, a c-MYC activator [57], is one of the most sig-
nificantly enriched genes. We could not quantify Myc 
protein, by SWATH-MS analysis, maybe due to relative 
scarcity being it a transcription factor. Nevertheless, we 
were able to detect higher levels of NPM1 among non-
clustering proteins.

We observed a weak correlation between protein abun-
dance and transcript quantification among differentially 
expressed proteins in both comparisons (palbociclib: 
r = 0.1477, p < 0.01; oxaliplatin: r = 0.1446, p = 0.02; Sup-
plementary Fig. S6A), indicating the occurrence of com-
plex post-transcriptional regulation. For instance, the 
relevant proteomic data regarding TRiC and ARSs roles 
in palbociclib responder and oxaliplatin non-responders’ 
models respectively, were not confirmed by RNA-seq 
(Supplementary Figure S6B). Nevertheless, some relevant 
processes related to protein folding, biosynthesis and 

proliferative features were captured by both RNA and 
protein analysis.

Integrative functional network (IFNA) analysis 
of proteotranscriptomic data
To gain deeper insight into the processes involved in the 
differential drug response in PDOs we performed an 
integrative analytical approach [58]. Thus, we fused the 
transcriptomics and proteomics differentially expressed 
datasets and extracted the common functional context 
through an integrative network analysis by STRING 
application via Cytoscape.

Data fusion and integrative functional network analysis 
(IFNA) were conducted for both oxaliplatin and palboci-
clib drug response comparisons. The functional clusters 
shown in the integrative network, representing a high 
level of interaction and integration of the proteomic and 
transcriptomic data, are referred as modules in the rest 
of the manuscript. High confidence interacting proteins 
are shown in Fig.  7 and Fig.  8, where relevant modules 
are marked with a shading. In both cases, large networks 
containing approximately 30–45% of the differential pro-
teins were observed. Interestingly, most of the proteomic 
clusters and RNA-seq hallmarks (Fig.  5B and Fig.  6B) 
are now contained in the networks, including some pre-
viously isolated clusters. The functional enrichment 
analysis of the different modules observed in IFNA are 
listed in Additional File 2 for oxaliplatin and palbociclib 
comparisons.

In the context of oxaliplatin response, the whole data-
set contained 12 proteins commonly represented by 
both omics, 83 only by proteomics and the remaining by 
RNA-seq. Only high confidence interactions are shown 
in Fig.  7 containing the main network and two isolated 
clusters. Globally it contained 191 proteins, 50 of them 
were detected only by protein, 136 only by RNA while 5 
were commonly detected.

Within the main network, 5 modules were selected to 
perform a functional enrichment analysis that confirmed 
the processes highlighted in individual omics profiles 
and now appear connected into this new integrative net-
work. For instance, the relevant translation and tRNA 
aminoacylation processes appear in module 3 which is 
now complemented with RNA data. Another interesting 
finding is module 4, where the proteomic cluster mito-
chondria protein import is now complemented with TCA 
cycle and Oxidative phosphorylation processes by RNA 
data. Proteasome proteomic cluster and DNA repair 
RNA-seq hallmark are now enriched processes in mod-
ule 5.

Some previously unconnected differential proteins 
now appear integrated into the network. Such is the case 
of CDH17 in module 7, and, interestingly, PRDX6 that 
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Fig. 6  Proteotranscriptomic characterization of Palbociclib responder line in comparison with no-responder ones. (A) Network mapping of 111 
proteins showing the 4 clusters composed of more than 3 proteins. Proteins with no associations to others were removed and nodes are colored 
according to the protein abundance (log2ratio) compared to responder PDO (left panel). Bar-chart of GO terms represented as percentage 
of annotated proteins using the same color coding (right panel). (B) Hierarchical clustering heatmap of differentially expressed genes per 
transcriptomic. (C) GSEA hallmarks analysis of RNA-seq data. NES: normalized enrichment score. FDR: false discovery rate. R: responder; NR: non 
responder
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is now part of module 1 enriched in redox metabolism, 
which may be involved in oxaliplatin resistance.

Regarding palbociclib sensitivity, the fused dataset con-
tained 172 proteins detected by proteomics, 73 detected 
by both proteomic and RNA-seq, and the remaining 
detected only by RNA-seq. Figure  8 shows the large 
network of the highest confidence interacting proteins 
in palbociclib comparison. Certain modules, related 
to splicing, translation, proteostasis and metabolism 
showed a high complementarity between RNA-seq and 
proteomics. This complementarity reinforces the func-
tional enrichment already defined. Interestingly, TRiC 
complex, that was only detected as differential at protein 

level (some of their subunits verified by western blot 
analysis, Supplementary Fig. S5E), is now complemented 
by BAG5, involved in endoplasmic reticulum stress regu-
lation and unfolded protein response activation [59]. In 
fact, it has been described that the protein BAG5 is a co-
chaperone involved in protein folding [60].

A new central module related to cell cycle and mainly 
represented by RNA-seq data, appeared highly connected 
with the proteasome, TRiC, and (to a lesser extent) with 
splicing processes. Moreover, the genes that define the 
GSEA Myc targets signature, a hallmark enriched by 
RNA-seq analysis, map into this network encompassing 
all these processes.

Fig. 7  Integrative functional network analysis of oxaliplatin RNA/protein fused dataset. High confidence interactions (score 0.7) showing 7 modules. 
Nodes in red correspond to proteins identified as differentially expressed by RNA-seq only, in blue those identified by proteomics only and in green 
those identified by both omics. Key for modules: 1: Glutathione metabolism & antioxidant activity; 2: Nitrogen compound metabolism; 3: Translation 
& tRNA aminoacylation; 4: TCA & Oxidative phosphorylation; 5: Cell cycle regulation; 6: Antigen presentation; 7: Cell adhesion
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The large diffuse metabolism module constitutes a 
good example of differential RNA and protein integra-
tion. Applying a clustering algorithm as described in 
Methods section, we found a clear enrichment in the 
pentose phosphates and glycolysis pathways, and also in 
lipid and nucleotide metabolism in relation to palboci-
clib sensitivity. When we mapped differentially expressed 
metabolic genes into KEGG Metabolic pathway map, we 
observed a nice complementation of both omics (Supple-
mentary Figure S7). These cellular pathways can satisfy a 
high energy and anabolic precursors demand to sustain 
enhanced growth and proliferation in this putative Myc-
addictive phenotype.

Discussion
Advanced CRC is a complex and heterogeneous disease 
in which resistance development limits the success of 
drug treatments. PDOs have been shown to maintain the 
same genomic and phenotypic features of original tumor 
tissue and can be used for high-throughput drug screen-
ing, enabling us to anticipate clinical response. Although 
the number of patients included in this study is not high, 
we demonstrate the potential of integrating PDO drug 
response with a deep proteotranscriptomic analysis, pro-
viding novel insights into sensitivity to oxaliplatin and 
palbociclib.

We report the generation and characterization of a 
library of PDOs from advanced CRC patients, including 

Fig. 8  Integrative functional network analysis of palbociclib RNA/protein fused dataset. Highest confidence interactions (score 0.9) showing 
modules. Nodes in red correspond to proteins identified as differentially expressed by RNA-seq only, in blue those identified by proteomics only 
and in green those identified by both omics. Grey line marks on the left 7 metabolism related modules with the highest integration. Key for 
metabolic modules: 1: Oxidative phosphorylation; 2: Pentose phosphate pathway, and Glycolysis; 3: Metabolism of nucleotides, and purinergic 
nucleotide receptor signaling pathway; 4: PPARA signaling pathway; 7: Lipid biosynthetic process; 9: Oxidoreductase activity; 10: Organonitrogen 
compound metabolic process. Key for modules on the right: 1: Regulation of signal transduction; 2: Regulation of cell communication and motility; 
3: Translation; 4: RNA splicing; 5: Transcription and DNA repair; 6: Cell cycle; 7: Membrane trafficking; 8: Proteasome; 9: Protein ubiquitination; 10: 
Interferon signaling; 11: ER-Golgi vesicle-mediated transport; 12: TRiC/CCT complex. Details of the modules are indicated in Additional file 2
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both naïve and pretreated subjects, showing that it is 
possible to obtain organoids even from heavily pretreated 
samples. We were able to generate a basal and progres-
sive MSI-high PDO, to our knowledge the first study to 
achieve these results. MSI lines were generally derived 
for primary CRC tumors [11].

Our organoids recapitulate their matched tumor tis-
sue at genomic and transcriptomic level. We observed 
an increase in PDO variant allele frequencies (VAFs) and 
copy number variations compared to corresponding tis-
sues, due to the enriched epithelial nature of organoids, 
avoiding the dilution effect of the DNA of other cell types 
such as fibroblast, endothelial and immune cells, etc. 
that are present in the tumor microenvironment (TME). 
Therefore, we could detect rare genomic events, such as 
the previously characterized SMAD4 and PTEN muta-
tions (Table  1), uncovering their potential oncogenic 
relevance (PTEN mutation, for instance, leads to protein 
expression loss). A few reports have been published on 
the comparison of transcriptomic similarity between 
PDOs and original tissues [61] and direct comparison 
showed a clear difference between organoids and tissues, 
as expected. Nevertheless, after adjusting for stromal 
gene contribution, organoids displayed a highly similar 
expression profile compared with that of tissue, which 
is stable over time. This proves an only minimal effect of 
culture condition, and that expression findings are robust 
and result from cancer cells.

Regarding tissue amount required for organoid genera-
tion, we demonstrated the feasibility of deriving reliable 
cultures even from tissues with a very low cellularity, 
although the genomic and phenotypic features of these 
PDOs may show lower correlation with the original tis-
sue. Demonstrating that these models could reproduce 
and therefore predict patient outcomes is crucial for 
their use in precision medicine. Indeed, our mCTO50B 
PDO derived from extremely low cellularity tissue could 
effectively replicate patient response. Biopsy site could 
be viewed as a more important issue. Given that not all 
lesions are easily accessible for biopsy, the use of a pri-
mary site as a substitute should be considered with 
caution as it might not replicate ex  vivo the response 
observed in the clinic. This was the case with RTO7, 
which could only be used a primary site biopsy, while the 
response observed in the PDOs failed to perfectly match 
what it was observed in liver metastasis.

We captured heterogeneous drug response to several 
agents and performed a proteotranscriptomic analysis of 
responder and non-responder models to identify base-
line molecular features associated with response. This is 
particularly important for backbone chemotherapeutic 
agents such as oxaliplatin, for which no biomarkers have 
been brought into clinical use yet [62]. SWATH-MS was 

selected for proteomic study as an emerging strategy for 
biomarker discovery due to the coverage achieved, the 
reliable quantitation obtained and the possibility to re-
interrogate the data [63]. Few studies have characterized 
organoids at the quantitative proteomic level. We report 
on the use of SWATH in PDOs in this regard, underlin-
ing its potential utility to identify a bona fide biomarker 
of response to anticancer agents, in contrast to most cur-
rent efforts focused on RNA signatures. Indeed, when 
individually analyzed, we observed cases where both 
techniques go in the same direction as well as discrepan-
cies between protein abundance and their correspond-
ing RNAs, probably due to mRNA post-transcriptional 
regulation. However, transcriptomic experiments have a 
much wider genome coverage than proteomics. So, we 
consider that both methodologies are complementary 
and that a multi-omics approach can provide richer bio-
logical information for a better comprehension of the 
complex pathological molecular mechanisms involved 
in drug response. In addition, after fusing RNA and pro-
tein data into a unique dataset and thanks to IFNA, we 
could confirm those processes which were detected at 
RNA or protein level and found new modules, enriched 
in processes which could have a putative role in differen-
tial drug response and that were highlighted after dataset 
integration.

Some of the differential proteins identified in relation 
to oxaliplatin response have been previously associated 
with resistance, but surprisingly, functional enrichment 
analysis highlights the t-RNA aminoacylation process, 
including some aminoacyl-tRNA synthetases (ARSs) and 
an auxiliary protein AIMP2 which forms the MSC com-
plex [51]. ARSs are traditionally considered housekeep-
ing molecules since they catalyze the aminoacylation of 
tRNAs in protein synthesis, an essential process for main-
taining cell homeostasis. Nevertheless, ARSs and AIMPs 
are closely associated with tumor biology [52]. Moreover, 
according to recent findings in the literature [64], specific 
ARSs are involved in the induction of unfolded protein 
response, which has been associated with escape from 
chemotherapy-induced senescence. This could therefore 
represent a novel mechanism of resistance to chemo-
therapy in our models [65]. As a proof of concept, the 
unfolded protein response process was also captured in 
the transcriptomic study as one of the most significant 
hallmarks, and fused data network analysis allowed us 
to confirm the putative involvement of these processes 
into a differential oxaliplatin response. In addition, IFNA 
showed that TCA and OXPHOS genes cluster together 
with the mitochondrial protein import, a process which 
was already identified by proteomic approach. Indeed, 
increased mitochondrial import of proteins involved in 
ATP synthesis such as ATP5A and ATP5B, together with 
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augmented citrate synthase, a key enzyme of TCA cycle, 
could mark a shift in tumor metabolism from glycolysis 
to oxidative phosphorylation pathway (OXPHOS) that 
could represent a mechanism of oxaliplatin resistance, 
such as has been unraveled in other tumor models [53]. 
We could hypothesize that up-regulation of these energy 
supplier processes guarantees efficient repair of oxalipl-
atin-induced DNA-damage, since the enzymes involved 
in this repair consume large amounts of ATP. In fact, tar-
geting ATP synthases has been proposed as a therapeutic 
strategy to defuel cancer growth. ATP synthase subunit 
ATP5B has recently been identified as the specific tar-
get of apoptolidin A, a glycomacrolide that selectively 
addressed OXPHOS-dependent cancer [66]. Moreover, 
data fusion and IFNA evidenced that proteasome pro-
teomic cluster is integrated into a module that contains 
also genes involved in DNA repair, and highlighted a 
functional enrichment related to oxidative metabolism 
and detoxification that connects a previously isolated 
protein such as PRDX6, a ferroptosis negative regulator 
[46].

Not all these processes or expression of specific genes 
were detected by both proteomic and transcriptomic 
analysis. Two hallmarks, unfolded protein response and 
PI3K-AKT-mTOR and mTORC1 signaling, were detected 
by transcriptomic data, but not at the proteomic level. 
Both were shown to play a significant role in chemother-
apy-induced senescence escape [65] and concur with the 
process highlighted by proteomic results. All this data 
showed that although transcriptomic and proteomic data 
were not completely correlated, integrating both analyses 
could be effective to identify a bona fide mechanism of 
drug response.

Although CDK4/6 inhibitor palbociclib is not cur-
rently used in the clinic to treat CRC, we used it as a 
proof-of principle of targeted therapy to be assessed in 
our PDOs. RAS wild type RTO7 showed resistance to 
anti-EGFR drugs, but was extremely sensitive to palbo-
ciclib, and differential gene expression analysis showed 
that it harbors significant MYC activation (GSEA analy-
sis). Analyzing proteomic data, RTO7 has higher levels 
of Nucleophosmin (NPM), a c-MYC activator [57]. Inter-
estingly, palbociclib has been reported to suppress NPM 
phosphorylation at threonine 199, thereby reducing cell 
proliferation in preclinical models of endometrial cancer 
[67]. MYC expression has been shown to correlate with 
poor prognosis in RAS wild type CRC [68], but probably 
this is not sufficient to justify response to palbociclib. 
SWATH studies indicated that this model has a strong 
activation of several processes involved in proteostasis, 
among which the whole protein folding TCP-1 ring com-
plex (TRiC) was up-regulated in palbociclib-sensitive 
PDO. TRiC altered expression was not detected at the 

mRNA level. However, the unfolded protein response 
process was one of the most significantly enriched hall-
marks found in transcriptomics. Moreover, both omics 
indicate the same process, while in this case proteomic 
data also pointed more precisely at the presence of this 
molecular mechanism. TRiC aids in folding approxi-
mately 10% of the proteome, with cytoskeletal proteins 
actin and tubulin among its best-known substrates, 
which also include several oncoproteins such as P53 and 
MYC itself [69]. TRiC proteins were shown to promote 
cell cycle progression and an invasive phenotype [55] 
and their overexpression was related with poor progno-
sis in CRC [70]. Taking all of this into account, altered 
TRiC complex expression may have prognostic relevance 
and could be a potential new therapeutic target. In fact, 
highly proliferative cancer cells increase their depend-
ence on several stress response pathways, including the 
heat-shock response to alleviate competition among 
proteins for access to chaperones [71]. These results are 
reinforced and highlighted after data fusion and IFNA. 
Indeed, this integrative approach showed that BAG5, 
detected by RNA-seq, appears to strictly interact with 
TRiC complex. BAG5 is involved in endoplasmic retic-
ulum stress regulation and unfolded protein response 
activation [60]. In particular, BAG5 interacts with heat-
shock proteins acting as a cochaperone in protein folding 
[72]. Moreover, some TRiC subunits (TCP1 and CCT5) 
are among Myc Targets v.1 signature genes (GSEA) and, 
indeed, TRiC complex overexpression has been corre-
lated with Myc activation [73].

IFNA also highlighted two interesting findings that 
are in line with a putative Myc addicted phenotype. On 
one hand, a new module appeared corresponding to cell 
cycle, mainly represented by RNA-seq data, which was 
strictly connected to modules involved in proteosta-
sis, mainly represented by proteomic data. On the other 
hand, the concordance of RNA and protein data indi-
cated an enrichment of metabolic pathways in RTO7, 
such as pentose phosphate, glycolysis, nucleotides and 
lipid metabolism, indicating that this PDO is character-
ized by a high energy demand.

All these results obtained by proteotranscriptomic 
integration allowed us not only to better identify those 
functional modules with a direct overlap between omics, 
but also to define new modules enriched in processes 
which could have a role in drug response or resistance.

Besides the limitation represented by the number 
of patients included, which could have underrepre-
sented the heterogeneous mechanisms involved in drug 
response, we should consider the need to work on func-
tional validation of proteo-transcriptomic data and to 
validate findings in additional models. In addition, the 
lack of TME in our models does not allow to study the 
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interplay between cancer cells and their natural micro-
environment, thus the possible effect of TME on drug 
response was not captured in our PDO cultures.

To our knowledge, this is among the few studies 
employing mass-spectrometry quantitative proteomics 
by SWATH to characterize PDOs and is the first to inte-
grate proteome study with gene expression profile in the 
search for potential biomarkers of response/resistance to 
drug treatment on PDOs. Our findings are confirmed by 
data fusion and integrative functional network analysis, 
supporting the inclusion of proteomics in multi-omic 
characterization and its feasibility in PDOs.

Conclusions
In conclusion, we have demonstrated the feasibility of 
building a PDO library from advanced and pretreated 
CRC patients. We provided a proof-of-concept valida-
tion that PDOs, combined with a genomic and prote-
otranscriptomic approach, can be used to better screen 
and identify relevant mechanisms involved in sensitivity 
to anticancer agents in a functional precision medicine 
context.
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expression of MLH1 and PMS2 in tissue corresponding to mCTO50B and 
RTO2 (Scale bar 50 mm, 20X).

Additional file 5: Supplementary Fig. S3. (A) Pearson correlation of 
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been filtered per frequency (at least 5% in PDOs). (B) forest plot represent‑
ing the distribution of r Pearson correlation of mutated genes in each PDO 
line and corresponding tissue. p<0.0001. (C) Linear regression between 
pathological features and NGS concordance. Tumor cells (%) assessed as 
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(CNV) profile of ddPCR assays of main driver genes across selected PDOs 
lines. (Red line: diploid status). CNT33 is a normal genomic DNA sample 
and is located at the right of the figure in green; samples are depicted in 
CNV ascending order. The CNV is assumed to follow a Poisson distribu‑
tion and values represent the estimated number of copies with a 95% 
confidence interval. Copy number above two means amplification in that 
region and copy number below two means deletion in that region. (E) 
Individual plot of first two dimensions using principal componentanalysis 
of normalized VST showing the distribution of organoid lines and tissues.

Additional file 6:Supplementary Fig. S4. (A) Scatterplot for technical 
replicates of drug screening data. Correlation between the three different 
technical replicates. Each data point represents the normalized value for 
an individual organoid line. (B) Log transformed dose-response curves 
for 5Fluorouracil, oxaliplatin and SN38 and combination respectively and 
ΔAUC calculation for each line (a negative value or positive indicates 
presence or absence of additive or synergistic effect, respectively). (C) Log 
transformed dose-response curves in selected standard drugs. (D) Log 
transformed dose-response curves in selected non-standard drugs.

Additional file 7: Supplementary Fig. S5. (A) Log2 TPM+1 of CDK4 and 
CDK6 expression in RTO7, BRD2 and BRD4 expression in RTO2, c-MYC and 
SMAD4 in RTO7 compared with the other cultures. (B) PTEN IHC in MSI 
PDOs and RTO7 as positive control. (C) Principal component analysis of 
protein expression showing the distribution of organoid lines and tissues. 
Variance absorption from PC3 and PC4: 21.98%. (D) Log2 protein abun‑
dance (PA) of TriC complex proteins in RTO7 versus RTO2/mCTO66S3. (E) 
Western blot analysis of TCP1, CCT2 and CCT8 proteins. GADPH is included 
as control. TPM: transcripts per million; PA: protein abundance.

Additional file 8: Supplementary Fig. S6. (A) Correlation between gene 
(Log2 TPM) and protein (Log2 PA) expression. Differentially expressed 
proteins have been matched with corresponding genes. (B) Log2 TPM+1 
of TRiC complex and ARSs gene expression in palbociclib (upper panel) 
andoxaliplatin (lower panel) comparisons. TPM: transcripts per million; PA: 
protein abundance.

Additional file 9: Supplementary Fig. S7. Differentially expressed pro‑
teins mapped in KEGG metabolic pathways (hsa01100) in the palbociclib 
comparison related to the metabolic enrichment group. In red those path‑
way reactions catalyzed by proteins identified by RNA-seq only, in blue 
those by proteomics only, in green those identified by both omics.

Additional file 10: Supplementary Table S1. All sample characteristics 
are represented among our PDOs cohort. P value refers to two-sided 
Fisher’s exact test for pre-treated and RAS/RAF status variables and to 
Chi-Square test for PTL and site of biopsy, being Chi-square results 0,4759, 
2 and 2,671, 2 respectively.
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